
Information extraction from 
historical well records using a large 
language model
Zhiwei Ma1, Javier E. Santos1, Greg Lackey2, Hari Viswanathan1 & Daniel O’Malley1

To reduce environmental risks and impacts from orphaned wells (abandoned oil and gas wells), it 
is essential to first locate and then plug these wells. Manual reading and digitizing of information 
from historical documents is not feasible, given the large number of wells. Here, we propose a new 
computational approach for rapidly and cost-effectively characterizing these wells. Specifically, we 
leverage the advanced capabilities of large language models (LLMs) to extract vital information 
including well location and depth from historical records of orphaned wells. In this paper, we present 
an information extraction workflow based on open-source Llama 2 models and test it on a dataset 
of 160 well documents. The developed workflow achieves an overall accuracy of 100%, accounting 
for both text conversion and LLM analysis when applied to clean, PDF-based reports. However, it 
struggles with unstructured image-based well records, where accuracy drops to 70%. The workflow 
provides significant benefits over manual human digitization, because it reduces labor and increases 
automation. Additionally, more detailed prompting leads to improved information extraction, and 
LLMs with more parameters typically perform better. Given that a vast amount of geoscientific 
information is locked up in old documents, this work demonstrates that recent breakthroughs in LLMs 
allow us to access and utilize this information more effectively.

In the oil and gas industry, orphaned wells are defined as a class of unplugged wells whose owner/operator is 
unknown. Thus, other than agencies from the government, no one is responsible for the well-plugging operations 
and site restoration processes1. While some orphaned wells are well-documented with detailed information, 
such as name, location, and drilling details, many others lack important information and are referred to as 
undocumented orphaned wells. Based on a recent report from the U.S. Geological Survey (USGS), there are only 
117,672 documented orphaned oil and gas wells in the 27 states in the U.S2. On the other hand, the Interstate Oil 
and Gas Compact Commission (IOGCC) reported that there are between 310,000 to 800,000 undocumented 
orphan wells in the 32 states of the U.S. that produce the most oil and gas, as of 20203. However, it is believed 
that the actual number of undocumented orphan wells is much larger. Orphaned wells often present numerous 
environmental and health risks, including emitting methane, releasing hazardous air pollutants, creating a risk 
of explosion, leaking continent into underground water4–6. For example, according to a technical report from 
U.S. Environmental Protection Agency (EPA) and a recent study4,5, in the U.S., the methane emissions from all 
abandoned oil and gas wells amounted to about 3% of those from natural gas and petroleum systems. However, 
the “documented” orphaned wells that are covered by the Bipartisan Infrastructure Law (BIL) only emit 
approximately 3% to 6% of total U.S. methane from all abandoned oil and gas wells. Therefore, it is necessary 
to find vital information on the orphaned wells such as well locations and depths for subsequent treatments to 
mitigate these environmental risks.

Oil and gas regulatory agencies in the U.S. maintain regulatory records (e.g., permitting documents) for 
wells under their jurisdiction that often contain valuable information about the location and the construction 
of wells. These historical records are often decades old and exist in a variety of formats that sometimes include 
digital PDFs but are usually scanned images or paper copies. The current practice for extracting information 
from historical documents related to orphaned wells involves hiring individuals to review and enter the data 
into a computer. This manual process requires some domain knowledge to accurately interpret the documents 
and correct errors, which are frequently compounded by the presence of stamps and various information 
formats (e.g., 45°25’28.56” and 56.358599 degrees, when dealing with unit of latitude). Given the high number 
of orphaned wells, it is neither practical nor realistic to manually extract and digitize this information from 
historical well documents. That is because the manual extraction process is labor-intensive and time-consuming. 
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Therefore, it is crucial to develop an automatic information extraction workflow to analyze those historical well 
documents, facilitating the rapid and precise identification of the wells’ location and depth information. To deal 
with this challenge, we developed an information extraction workflow combining text conversion techniques, 
(e.g., Optical Character Recognition or OCR) and large language models (LLMs). Specifically, OCR technology 
is used to convert different types of well documents such as PDFs and scanned images, into machine-encoded 
texts, which are editable and searchable data7,8. Next, we employed publicly available pre-trained LLMs to 
perform the well information extraction, during which, the converted texts are used as inputs for a properly-
designed prompt. This developed workflow is based on the strong capabilities of LLMs.

LLMs are often referred to as pre-trained language models based on vast amounts of data9,10. Recently, 
artificial intelligence and machine learning have rapidly advanced and been widely adopted in the geoscience 
and subsurface flow fields for various applications. These include well control/production optimization 
in oil/gas applications11,12, reconstruction of complex spatial fields for geospatial analysis13, for upscaling 
geomechanical properties14, for geological CO2 storage modeling15,16, for rapid forecasting and history 
matching in unconventional reservoirs17, and for inference of random medium properties18. As one type of 
artificial intelligence model, LLMs can be described as extensive, pre-trained statistical language models that 
utilize neural networks19. The development and advances in LLMs are very fast. These developments include 
the introduction of new models and increased model parameter sizes, along with incorporating domain 
information for fine-tuned LLMs. New fine-tuned versions of base models are released many times per day, and 
new base models such as Llama, Mistral, and Mixtral are also released frequently. Currently, many LLMs are 
referred to transformer-based neural language models. These models typically possess billions of parameters 
and are trained using an extremely large dataset19. Due to their emergent ability and generalizability20, LLMs are 
capable of generating text, understanding natural language, translating, summarizing content, and performing 
sentiment analysis, among other capabilities. Examples of applications of LLMs can be found in the following 
categories: translation21, sentiment analysis22, question and answering23, code generation24, summarization25, 
and chatbots26. In the field of hydrology and earth science, a brief overview of opportunities, prospects, and 
concerns using ChatGPT was provided27. The research topic addressed in this work pertains to the question-
answering category. In other words, we pose specific questions to the LLMs based on well records and anticipate 
that the LLMs will generate the desired answers, after analyzing the provided text. Our objective is to leverage 
LLMs’ capability for processing text as an alternative approach to overcome challenges associated with the 
manual extraction of well information from historical documents, as highlighted above.

In this work, we mainly focused on Llama 2 family of Large Language Models. Llama 2 is an updated version 
of Llama 128 and it was trained on a mix of data that are publicly available29. In addition, there is a 40% increase 
in the pre-training corpus, with the model’s the context length being doubled when compared with Llama 1. 
Meta’s release of Llama 2 family consists of several pre-trained Llama 2 models, ranging from 7 billion to 70 
billion parameters, along with their corresponding fine-tuned LLMs for dialogue use cases. Training Llama 2 
models is not trivial, as they require advanced graphics processing unit (GPU) clusters. To train these models, 
Meta used two clusters equipped with NVIDIA A100 GPUs. It took about 3,311,616 GPU hours to train these 
models and with 539 tCO2eq generated. According to Touvron et al.29, Llama 2-chat models, in general, have 
a better performance than some open-source models on a series of safety and helpfulness benchmark tests. In 
addition to that, the authors also claimed that Llama 2 models achieve performance comparable to some closed-
source models in their human evaluations. Because of their superior performance and open-source nature, 
Llama 2 models were used for analysis in this work.

In order to interact with LLMs and receive responses, it is common to use prompts9. A typical prompt 
consists of three elements: instruction, context, and input text20. As a new field of study, the goal of prompt 
engineering to improve LLMs performance for a given task by creating and refining prompt contents20. Recently, 
various prompting approaches have been developed to improve the reasoning capability of LLMs30. One of these 
examples is the chain-of-thought strategy proposed by Wei et al.31, in which the LLMs are asked to provide a 
series of intermediate reasoning steps and to improve the final performances for complex reasoning tasks30,31. 
In this work, we optimized prompt contents including the approach of chain-of-thought in order to improve the 
performance of well information extraction tasks.

The contribution of this work can be summarized as follows: First, we developed a new LLM-based workflow 
for well information extraction. To the best of our knowledge, the use of LLMs to extract critical information 
relevant to managing orphaned oil and gas wells has not been widely reported in the literature. Therefore, this 
work could serve as an example for information identification tasks for other researchers and the research 
communities. Second, we conducted a detailed analysis of the impact of prompts, model sizes, and the chain-
of-thought strategy on the information extraction performance. Third, the developed workflow can be easily 
deployed and we believe that employing this workflow can potentially accelerate information digitization from 
historical well documents.

The rest of this paper is organized as follows: we will first introduce our detailed methodology related to the 
workflow of information extraction, historical well records, text conversion, the theory of LLMs, Llama 2, and 
performance evaluations in Section 2. We will present the extraction results including various treatments that 
are incorporated in this work in Section 3, which is followed by a brief discussion of the potential impacts of 
this study, challenges, and the corresponding opportunities in Section 4. Finally, we will summarize the major 
findings and provide the potential future works in Section 5.

Materials and methods
In this section, we provide a detailed description of the proposed information extraction workflow, historical 
well records, large language models used for information extractions, and performance evaluation method.

Scientific Reports |        (2024) 14:31702 2| https://doi.org/10.1038/s41598-024-81846-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Overview of the information extraction workflow via large language models (LLMs)
The proposed workflow for information extraction from orphaned well historical records is presented in Figure 1. 
As shown in this figure, the first step involves converting historical documents into text via text conversion 
approaches such as optical character recognition (OCR). Next, the converted texts are subjected to LLMs. Here, 
we integrate the texts into some predefined prompt templates to form the final question prompts.

After running the LLMs with the complete prompt, an answer in text format can be generated, as shown in 
Figure 2. The answer can be examined, and if the result is satisfactory, the information extraction task for this 
historical document is completed. Otherwise, we may need to refine the prompt or switch to different LLMs to 
achieve the desired outputs.

In this work, we used a standard for-loop to automatically extract the information of interest from the 160 
well documents. It is worth noting that we used quantized Llama 2 models in this work to reduce the memory 
usage. Specifically, for example, for Llama 70B model, we utilized the Llama-2-70B-chat-GPTQ32 obtained from the 
Hugging face33 due to the reduced size, instead of its the standard version. For the Llama-2-70B-chat-GPTQ, the 
GPTQ algorithm34, was employed to quantize Llama 2 models within AutoGPTQ library.

Currently, we have access to only 160 documents from Colorado and Pennsylvania. This small dataset 
allowed us to quickly validate our approach. Once a larger dataset becomes available, the developed framework 
is expected to scale easily for information extraction. We acknowledge that this sample size, particularly for 
Pennsylvania, may not be sufficient for a highly reliable statistical evaluation. However, this dataset reflects the 
current limitations of available data for our study. We are actively working to obtain additional well documents 
from other states, and once these data are available, our workflow can be readily applied to extract information 
on a larger scale. Our scope of this study is to propose a novel process for information extraction from well 
records by leveraging the capabilities of LLMs and to test this concept.

The following subsections will cover the detailed methodologies for each major step in the information 
extraction workflow.

Fig. 1.  The proposed workflow for well information extraction via LLM.
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Historical well records
In this study, we analyzed two types of well records: well drilling completion reports from Colorado and well 
record reports from Pennsylvania, as illustrated in Figure 3. These types of well records are commonly utilized 
by oil and gas regulatory agencies to document the construction history of wells. However, it is worth noting 
that each jurisdiction tracks well information with their own records that have unique formats. The multitude 

Fig. 3.  Examples of well records used in this study (some sensitive information was blocked).

 

Fig. 2.  An illustration of model inputs and outputs for LLM. Note that we aim to show the structure of the 
model’s input and output. One has to provide specific well record texts to the model input section, and the 
LLM would generate the corresponding detailed output in terms of well location and depth.
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of oil and gas jurisdictions in the U.S. and the differences between the records they use increases the practical 
challenge of digitizing well information into a unified platform for characterizing orphaned wells.

The preliminary dataset assembled for this study includes 150 well drilling completion reports from Colorado 
and 10 well records from Pennsylvania for demonstration purposes. The well records presented in Figure 
3 contain a wealth of information, such as the operator’s name, address, and phone number; the American 
Petroleum Institute number (a unique identifier assigned to each oil and gas well), name and location of the well; 
the spud date; the depth; and details on casing, liner, and cement. Although well records contain an abundance 
of information, the location and depth data are crucial for well remediation and will be extracted using LLMs in 
this work. That is because depth information provides a better understanding of the casing depth.

As shown in Figure 3, we can see that well drilling completion reports from Colorado are clean. On the other 
hand, the well records from Pennsylvania contain many hand-written words and stamps. For example, in the 
top left corner, there are three hand-written words: “Standard Survey Report”. There is a stamp on the mid-right 
side of this record, which shows “RECEIVED AUG 25 2016”. In addition, the middle part of the document is 
somewhat blurred with grey shadow. All these hand-written words, marks, and stamps increase the challenge 
of information extraction using LLMs. That is because the LLMs employed in this work require texts as input; 
therefore we must utilize text conversion technologies (e.g., OCR) to convert the image-based well records into 
text.

Text conversion
Plain text was acquired from the Colorado and Pennsylvania well records using two approaches selected based 
on the original format of the document: 1) PDF-to-text conversion and 2) optical character recognition (OCR). 
Colorado well records were stored in text-based PDF format, which enabled a direct extraction of embedded text 
using the open-source tool pdftotext35. Pennsylvania well records were stored as scanned image files, which have 
no embedded text. Consequently, Google’s Enterprise OCR, made available through their Document AI API36, 
was used to convert text in the Pennsylvania records into a machine-readable format.

Figure  4 displays a portion of the text information extracted from the two examples shown in Figure  3. 
When compared with the original documents in Figure 3, the quality of plain text conversion is acceptable, 
as the information presented in Figure 4 matches that in the original documents. For example, the converted 
information of well locations (latitude and longitude) agrees with that in the two documents in Figure 3. Another 
observation is that the formatting of converted information is not the same. The structure of the PDF-converted-
text in Figure 4a preserves the alignment and structure of the original document as in Figure 3a. However, the 
OCR converted text in Figure 4b does not maintain a similar table-style structure to that in the well record 
shown in Figure 3b. Instead, the words within one single line in the image are divided into multiple rows in 
the OCR-processed text. The lack of correct structure in OCR-converted text poses a significant challenge for 
information extraction using LLMs as it requires LLMs to have advanced understanding capability to analyze 
the overall text. To improve performance, more advanced computer vision approaches should be applied for text 
conversion, which is beyond the scope of this paper. Once we have converted the text information, the next step 
is to feed it into a pre-designed prompt for LLM for extracting well location and depth.

Fig. 4.  Part of the texts extracted from the two well records shown in Figure 3. Some sensitive information was 
blocked.
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Large language models (LLMs)
LLMs are machine learning models trained on vast amounts of data. This training enables them to comprehend 
and produce text that closely resembles human writing. The sheer scale of these models, coupled with the large 
amounts of data they are trained on (on the order of trillions of tokens), allows them to learn complex patterns 
and relationships within the text. As the training progresses, these models develop abilities to perform a variety 
of tasks. For example, they can accurately answer queries, summarize vast amounts of information, and generate 
new text that is both coherent and contextually sound.

Llama 229, developed by Meta AI, is a large language model that has attracted attention from the research 
community for its capabilities. It follows a structure similar to GPT (Generative Pretrained Transformer)37, 
which relies on stacked attention layers to process and generate text. These layers work by focusing on different 
parts of the input text to determine what is important and what is not. This mechanism enables Llama 2 to 
process and generate text effectively, understanding the context and nuances of the input text.

Available in different sizes, from smaller versions like Llama 2 7B to the largest, Llama 2 70B, these variants 
differ in their processing power and the depth of understanding they can provide. Larger models, while 
requiring more computational resources, can deliver more accurate interpretations of data. Llama 2 operates 
under an open-weights regime, meaning the model weights are accessible to the public, but the specific data 
used for training these models is not disclosed. Llama 2 comes in two main versions: Foundational and Chat. 
The Foundational model is a general-purpose tool for text completion, while the Chat model has been further 
refined with techniques like supervised fine-tuning and Reinforcement Learning from Human Feedback (RLHF) 
to enhance its abilities to be a useful assistant. In our work, we focused on the Chat-type models, which are 
optimized for tasks requiring in-depth analysis and information extraction.

As mentioned previously, prompt engineering is a crucial aspect of working with chat models. It involves 
crafting the input text (or prompt) to guide the model in generating a desired output. Through effective 
prompt engineering, users can steer the focus of LLMs and improve the quality of the extracted information. 
Moreover, LLMs like Llama 2 can perform zero-shot learning, which allows the model to make predictions or 
generate responses in tasks it has not explicitly been trained on. Contrarily, few-shot learning for LLMs refers 
to the process of a model learning from a small number of examples. For a specific task, we can provide a 
few demonstrative examples in the prompt to enhance the performance through few-shot learning. Another 
useful concept for LLM prompting is the chain-of-thought approach31. This involves the model breaking down 
a problem into smaller, manageable parts, similar to how humans approach complex problems. This method 
can enhance the model’s ability to understand and solve intricate tasks, making it a very useful approach for 
analyzing and extracting data from extensive and complex records. In this work, we mainly tested zero-short 
learning and chain-of-thought methods.

LLMs performance evaluation
Although additional information is available from the well documents, in this work, we focused only on the 
location (latitude and longitude) and depth (true vertical depth) of each well. We employed one metric to assess 
the performance of our information extraction process. The metric is the accuracy based on offset or AOS , 
which is defined as:

	
AOS = NOS

NT
× 100%� (1)

where AOS  denotes the accuracy; NOS  represents the number of entries that are within the offset threshold of 
the true value; NT  represents the total number of entries. In an ideal case, AOS  would be 100% if the workflow 
generates results that are accurate, which may not always be the case in reality. In this paper, we calculated 
AOS   for location and depth information extraction only rather than latitude, longitude, and depth. That is 
because the location can be represented as latitude and longitude. The location offset is calculated based on 
geographical distance, also known as geodetic distance, which is the shortest arc length between two locations 
along the Earth’s surface, using GeographicLib package38.

The rationale behind this metric is that it is also acceptable if a certain LLM generates a close approximation to 
the true value. For example, if the extracted location, in terms of latitude and longitude, is within 10 meters of 
the true location, we treat the result as correct. Similarly, if the extracted depth is within a range of 10 feet (∼3 
meters), we would accept this extraction result. From a practical point of view, an offset of 10 meters for the well 
location is considered acceptable because field operators can easily locate the well based on the extracted well 
location information.

Results
In this section, we demonstrate the capabilities of LLMs for information extraction using Llama 2 models. 
We begin by comparing the performance of Llama 2 70B model with various prompts. Next, we illustrate 
the performance differences among Llama 2 7B, 13B, and 70B models using the optimal prompt. Finally, we 
showcase the effectiveness of implementing the chain-of-thought strategy with Llama 2 70B model and compare 
its performance with other LLMs, again using the selected optimal prompt.
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Prompt engineering for Llama 2 70B
Before applying any LLM for information extraction, we must formulate and select the optimum prompts for the 
Question-Answering task. This can be achieved through prompt engineering, which involves designing proper 
prompts to achieve desired outcomes from LLMs39,40.

To design the best-performing prompt, we used a trial-and-error approach with iterative refinements. During 
this process, domain knowledge of the oil and gas industry and geosciences was applied to meet our specific data 
extraction requirements. For example, we specified that longitude and latitude should be in decimal format to 
ensure compatibility with future processing. As shown in Table 1, we designed a total of four prompts, from 
Prompt 1 to Prompt 4, to locate wells and identify their depths from the documents. To design these prompts, 
we began by manually reviewing a few representative documents to obtain a preliminary understanding of their 
contents and structures. Based on our domain knowledge and specific requirements, we first created a simple 
and straightforward Prompt 1. We then added additional constraints and guidance to subsequent prompts to 
enhance their focus on information extraction. For example, we directed the LLMs to extract true vertical depth 
as the depth information rather than measured depth (since both types are present in the documents) and 
enforced that longitude be negative given the wells’ geographic locations. Once these prompts were designed, 
they were subjected to information extraction testing via LLMs, as shown in Figure 1.

Table 1 provides detailed information on four proposed prompts including prompt index, prompt content, 
and the corresponding explanation. Prompt 1 is the simplest one by just instructing LLMs to extract well 
information in terms of latitude, longitude, and depth information and to report in a JSON format. If users 
lack detailed information about the documents, the simplest prompt can be used directly without extensive 
domain knowledge. On the other hand, Prompt 4 is the most comprehensive one, ensuring that: (1) reported 
latitudes and longitudes are drilled latitudes and longitudes, and use decimal degrees as the unit; (2) longitudes 
are negative, given the well’s location in the U.S.; (3) only true vertical depth is exported as depth information, 
despite that other depth information, e.g., measured depth, are available; (4) the true vertical depth is a positive 
number. By combining the proposed prompt with converted text through a text extraction process, a complete 
question was created for LLMs, which was then subjected to LLMs to perform information extraction. It is 
important to note that once the questions are formulated using the prompts, they can be directly utilized across 
various LLMs without any further adjustments.

After running Llama 2 70B model with a question, an output as shown in Figure 5 can be obtained. Figure 
5 represents the output from Llama 2 70B model for the drilling completion report in Colorado (in Figure 
3a) using Prompt 1. As expected, the output is in the format of a JSON file within the Python environment. 

Fig. 5.  An example of information extraction output using Llama 2 70B.

 

Prompt 
index Prompt Explanation

Prompt 1
Extract the location using latitude and longitude, and well depth of the well described in this well completion 
report. Output only the latitude, longitude, and depth in JSON format as numbers, not strings, in a clean version. 
Only output the JSON and nothing else. Here is the OCR’d contents of the well completion report:

This prompt directs the LLM to extract the well’s 
location (latitude and longitude) and depth from 
the well completion report, and to output the 
numbers in JSON format. This is the simplest 
prompt for this task.

Prompt 2
Extract the drilled latitude (in degrees), longitude (in degrees), and true vertical depth (TVD) of the well described in 
this well completion report. Output only the latitude, longitude, and depth in JSON format as numbers, not strings, 
in a clean version. Only output the JSON and nothing else. Here is the OCR’d contents of the well completion 
report:

Provide more detailed instructions for reporting 
the well’s location using decimal degrees, and 
outputting the well depth specifically in terms of 
True Vertical Depth (TVD).

Prompt 3

Extract the drilled latitude (in degrees), longitude (in degrees), and true vertical depth (TVD) of the well described 
in this well completion report. Do not report depth in terms of Measured Depth (MD). Keep in mind that this text 
is extracted using optical character recognition (OCR), so the format may be jumbled. This well is in the western 
hemisphere, so the longitude should be negative. Output only the latitude, longitude, and depth in JSON format as 
numbers, not strings, in a clean version. Only output the JSON and nothing else. Here is the OCR’d contents of the 
well completion report:

Additional instructions are provided to ensure 
the LLM not report measured depth, and the 
longitude should be negative given the location of 
the well of interest.

Prompt 4

Extract the drilled latitude (in degrees), longitude (in degrees), and true vertical depth (TVD) (not footage at surface 
and not plug back total depth) of the well described in this well completion report. Do not report depth in terms of 
Measured Depth (MD). Keep in mind that this text is extracted using optical character recognition (OCR), so the 
format may be jumbled. This well is in the western hemisphere, so the longitude should be negative. In addition, the 
true vertical depth cannot be negative. Output only the latitude, longitude, and depth in JSON format as numbers, 
not strings, in a clean version. Only output the JSON and nothing else. Here is the OCR’d contents of the well 
completion report:

Ensure the LLM not using footage at surface 
and plug back total depth as well as depth 
information. Also, ensure that well depth 
information from the well completion report is 
not negative. If a negative value is found, it should 
be corrected to the corresponding positive value. 
This is the most complicated prompt for this task.

Table 1.  Different prompts for information extraction. The italicized texts in the second column highlights the 
differences between the current prompt and the previous one.
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Specifically, the output for this example contains the names “latitude”, “longitude”, and “depth”, along with their 
corresponding numbers as instructed by the prompt. In this example case, the latitude, longitude, and depth 
are “40.197079”, “-104.575949”, and “6893” ft, respectively. The extracted information exactly matches the true 
values, demonstrating the good performance of Llama 2 70B model with Prompt 1. It should be noted that 
although JSON-style outcomes are generated by LLMs after analyzing the text-based well records, the current 
workflow does not have the capability to save the outputs directly as local JSON files. Therefore, an additional 
post-processing step is required to save the information extraction outputs as local files.

Let’s now examine the final extraction performance for the four prompts across the 160 well records in 
Colorado and Pennsylvania. Given the fact that the well records from the U.S. are not in the same format, we 
here evaluate the performance of LLMs for information extraction separately. Again as introduced in Section 2, 
we used AOS  as the metric for performance evaluation. We reiterate that we used 10 meters and ∼3 meters (10 
ft) as the thresholds for computing well location and depth offset, respectively. For the 150 Colorado drilling well 
record documents, the information extraction results obtained by Llama 2 70B with four different prompts are 
presented in Table 2.

Clearly, excellent location extraction performances were obtained using Llama 2 70B model for Colorado 
cases. As shown in this table, the values of AOS  for location reach 100% despite the varying contents of the 
prompt. This observation reveals that the locations of all 150 wells were correctly extracted from the well drilling 
completion reports in Colorado using the LLM and proposed prompts. In terms of well depth extraction, we find 
that Llama 2 70B model with Prompt 1 (the simplest prompt) yielded the lowest accuracy. Specifically, the value of 
AOS  were only 48%, indicating that the locations of only 72 documents were correctly identified. In other words, 
Llama 2 70B model, when using Prompt 1, encountered difficulty in extracting information from the remaining 
78 documents. Despite utilizing an offset of 10 ft for computing AOS , the result here shows that the identified 
depth, using the LLM with Prompt 1, deviates by more than 10 ft from the true value for those 78 documents. 
For example, in one drilling well completion report, the actual well depth is 6806 ft, however, the extracted 
value is 17529 ft, which is about 10723 ft away from the true value. This observation illustrates that for this case, 
extracting well depth information was much more challenging than extracting well location information using 
Prompt 1. Except Prompt 1, Llama 2 70B with the remaining prompts resulted in very reliable depth extraction 
performance with 100% accuracy. This result demonstrates that more detailed prompts (Prompts 2 to 4) enable 
more reliable information extraction compared to a simple prompt (Prompt 1).

Table 3 compares well information extraction results for the 10 Pennsylvania well records using Llama 2 70B 
with these predefined four prompts in Table 1. The major difference between the Pennsylvania and the Colorado 
case studies is that Llama 2 70B provided inferior results for Pennsylvania cases. Clearly, none of the prompts 
resulted in completely correct extraction for the 10 Pennsylvania well records. For the location, Llama 2 70B 
model with the best-performing prompt (i.e., Prompt 4) resulted in an accuracy of 70%. This corresponded to 
7 correctly extracted well locations. For the depth information extraction task, a value of 90% was achieved for 
AOS  from all four prompts, indicating that we obtained correct depth information for 9 out of 10 documents. 
Two possible reasons may explain this performance. First, the original image document contains some errors. 
For example, one Pennsylvania record shows a longitude of “77.670522”, which should be the negative value 
“-77.670522”. As a result, OCR also missed the “-” sign in the converted text. Despite adding, “This well is in 
the western hemisphere, so the longitude should be negative,” in Prompts 3 and 4, Llama 2 70B may still have 
difficulty correcting this error. The second reason relates to unit conversion. Some Pennsylvania well records use 
degrees, minutes, and seconds for latitude and longitude, which differs from our request for decimal degrees. 
Llama 2 70B model used in this work did not perform the unit conversion completely correctly. To verify our 
hypothesis, we conducted another test by: (1) manually correcting any errors/issues in the OCR-converted texts 
for the Pennsylvania well records, given the small number of such records, and (2) re-running the information 

Prompt index Location Depth

Prompt 1 60% 90%

Prompt 2 60% 90%

Prompt 3 60% 90%

Prompt 4 70% 90%

Table 3.  Information extraction results using Llama 2 70B model with different prompts for Pennsylvania well 
records.

 

Prompt index Location Depth

Prompt 1 100% 48%

Prompt 2 100% 100%

Prompt 3 100% 100%

Prompt 4 100% 100%

Table 2.  Information extraction results using Llama 2 70B model with different prompts for Colorado well 
completion reports.
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extraction workflow with Llama 2 7B and Prompt 4. As expected, we achieved 100% accuracy in the location 
extraction task, with all 10 correct location extractions from the Pennsylvania well records. This demonstrates 
that LLM performance can significantly improve when OCR-converted texts are more reliable. For the depth 
information extraction task, we observed that high accuracy was achieved with all four prompts. Specifically, 
the AOS  of all Llama 2 70B model runs reached 90%, which is very close to the accuracy obtained from the 
Colorado completion reports. A detailed examination of this failed record shows that it had a depth of “0” in the 
true vertical depth field, but Llama 2 models used the measured depth of “381” instead.

On the other hand, we observed that the extraction accuracy for locations increased with the complexity 
of prompts. For AOS , Llama 2 70B led to 70% accuracy using Prompt 4, compared to only 60% accuracy for 
the remaining three prompts for the location information extraction task. The results in this case reveal that 
more complicated prompts result in better extraction performance. Based on the information extraction results 
in Tables 2–3, we see that a more detailed prompt often leads to better information extraction results. In the 
following sections of this paper, Prompt 4 was used for the investigation.

Comparison of different Llama 2 models
In this test, we used the best prompt via zero-shot learning from the previous section to test the extraction 
performance of the three Llama 2 models, i.e., 7B, 13B, and 70B. Here, Prompt 4 was employed within Llama 
2 7B and 13B to extract well location and depth information from the 160 well records. Subsequently, we 
compared these extraction results with those from Llama 2 70B model. Tables 4-5 show the comparison results 
for Colorado and Pennsylvania cases, respectively. These two comparisons reveal that, in general, as the size 
(model parameters) of Llama 2 increases, better performance is achieved, though some deviations from the 
trend are observed, as shown in Table 4.

For the 150 drilling completion reports in Colorado, Llama 2 7B model achieved an accuracy of 82.67% 
accuracy in terms of AOS  for depth, which is lower than the 97.33% accuracy achieved by Llama 2 13B model. 
As expected, neither of the smaller models can surpass the 70B model in depth extraction. However, surprisingly, 
we find that for the location extraction task, the 7B model yielded a slightly better result when compared with 
the 13B model, contrary to expectations. For example, the Llama 13B model only achieved 66% for AOS . 
Interestingly, the Llama 7B slightly outperformed it, achieving a higher accuracy rate 77.33% for AOS . For the 
10 Pennsylvania well records, we observed a consistent pattern: the larger model yielded better information 
extraction results. This conclusion is supported by data on both location and depth. For example, for the location 
information extraction, Llama 2 7B, 13B, and 70B models resulted in accuracy values of 30%, 70%, and 70%, 
respectively. For the depth case, Llama 2 models with 70B and 13B parameters significantly outperformed the 
7B model. The results presented here demonstrate that larger LLMs are generally more effective for information 
extraction tasks. It is recommended that users opt for larger models if they have sufficiently powerful hardware 
support, as more advanced hardware is required to run larger LLMs.

Impact of the chain-of-thought on the performance of Llama 2 70B
As presented in the previous sections, Llama 2, regardless of the prompt used or the size employed, was difficult 
to extract completely correct information from the 10 Pennsylvania well records. In this work, we also explored 
the possibility of enhancing extraction performance by incorporating the chain-of-thought approach with Llama 
2 70B, using Prompt 4. Given that the text extraction performance from the Colorado well drilling completion 
reports is reliable, we focused solely on the 10 Pennsylvania reports. We implemented the chain-of-thought 
approach to Prompt 4 in Table 1 by adding the following words to the end of the prompt: Please explain your 
detailed steps to get the numbers. By incorporating this strategy, Llama 2 70B model generates the following 
output, as presented in Figure 6.

Unlike those without the chain-of-thought strategy, the texts generated by Llama 2 here exhibited more 
detailed “thinking” steps for extracting the numbers for location and depth. As shown in the texts, Llama 2 first 

Prompt index Location Depth

7B 30% 40%

13B 70% 90%

70B 70% 90%

Table 5.  Information extraction results using three Llama 2 models with Prompt 4 for Pennsylvania well 
records.

 

Prompt index Location Depth

7B 77.33% 82.67%

13B 66% 97.33%

70B 100% 100%

Table 4.  Information extraction results using three Llama 2 models with Prompt 4 for Colorado well 
completion report.
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identified the location in terms of latitude and longitude of 41°1’56.9”, −79°27’14”, respectively. The location 
numbers in degrees, minutes, and seconds accurately matched the true values in the original well record. 
However, as instructed by the prompt, the extracted location should be in decimal degrees, instead of degrees, 
minutes, and seconds. Therefore, another implicit task for the LLM is to convert the numbers from degrees, 
minutes, and seconds to decimal degrees, which needs a certain degree of mathematical skill. As shown in its 
output, Llama 2 70B directly converted the latitude of 41°1’56.9” to 41.02733333333334. However, the correct 
conversion should result in 41.032472. Despite the two values being very close, a slight difference remained.

The corresponding information extraction results with incorporating the chain-of-thought strategy are 
presented in Table 6. It is interesting to observe that, with the chain-of-thought employed, Llama 2 70B model 
resulted in the same or even worse extraction performance than that achieved without using the chain-of-thought 
strategy. Specifically, Llama 2 70B with two strategies resulted in the same level of accuracy for depth extraction. 
For location extraction, Llama 2 70B with the chain-of-thought strategy yielded 60% in terms of AOS , which is 
lower than the 70% by Llama 2 70B without chain-of-thought strategy. The comparison presented here reveals 
that the chain-of-thought strategy offered limited improvement for location and depth information extractions 
for Llama 2 70B. It is anticipated that if a post-processing procedure is applied to convert the location units from 
degrees, minutes, and seconds to decimal degrees, the results could be potentially improved. However, this is 
beyond the current scope of this paper. In addition, combining LLMs with external tools through the strategy of 
function calling may be one potential solution to this precise mathematical problem.

Comparison with other LLMs
In this work, we also tested the information extraction workflow using three additional models, including 
Mixtral 8×7B, Llama 3.1 70B, and Llama 3.1 405B. For the Mixtral 8×7B model, the results are presented in 
Table 7. Interestingly, the Mixtral 8×7B did not yield better information extraction results compared to Llama 
2 70B model used in this study.

Scenario Location Depth

With Chain-of-thought 60% 90%

Without Chain-of-thought 70% 90%

Table 6.  Comparison of information extraction results for Pennsylvania well records using Llama 2 70B Model 
with and without implementing of chain-of-thought strategy.

 

Fig. 6.  An example of LLM output for one Pennsylvania well record with implementing chain-of-thought. The 
true latitude, longitude, and depth are 41◦1’56.9”, -79◦27’14”, and 6038 ft, respectively.
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On the other hand, the Llama 3.1 models were just released in July 2024. We applied the SambaNova Platform 
(https://sambanova.ai/) to implement the full Llama 3.1 70B and 405B models. Here, we used the Llama 3.1 
models to extract information for the 10 Pennsylvania well records only. Our results showed an improved 
performance when Llama 3.1 models were used. Specifically, the values of AOS  for location and depth reached 
80% and 90% with the Llama 3.1 70B model, and 90% and 100% with the Llama 3.1 405B model. The Llama 
3.1 405B model extracted all correct depth information, including the case with a depth of “0”. It made only 
one error in location extraction out of 10 documents in terms of AOS . This reveals that the Llama 3.1 405B 
model has stronger mathematical capabilities for converting units of latitude and longitude. This additional 
result demonstrates the potential of more powerful and new models to achieve higher accuracy.

Discussions
In this section, we briefly discuss the potential impacts of the developed workflow, the current challenges, and 
potential opportunities for applying LLMs to tasks such as information extraction. This discussion is based 
on our results from extracting well location and depth data using 160 documents. In addition, given that the 
development of LLMs is progressing rapidly, it is possible that some of the information summarized here may 
not accurately reflect the latest advancements in LLMs.

Potential impacts
The developed LLM-based information extraction framework has great potential to accelerate the document 
digitization process. We expect that this workflow can save significant time and reduce costs for large-scale 
document information extraction tasks. Since the LLM-based workflow can operate continuously and in parallel, 
the efficiency of information extraction could be improved. Although the workflow was developed for orphaned 
well characterization task, it has a wide range of potential applications, as similar large-scale data extraction 
challenges exist across various fields.

It is worth noting that the information extraction framework may not achieve 100% accuracy in locating 
wells and identifying depth information from documents, as seen, for example, in the Pennsylvania case study. 
High accuracy is likely necessary for the practical application of this framework in some real-world scenarios, as 
inaccuracies could result in significant operational costs. Therefore, enhancing the accuracy of this framework as 
much as possible is recommended. In practice, this methodology can be combined with other techniques to more 
reliably identify well locations for orphaned well applications. Examples include remote sensing technologies, 
such as aero-magnetometers and fixed-wing drones equipped with magnetometers, as reported by O’Malley et 
al.41.

Enhance text conversion quality from historical documents
As introduced previously, the current information extraction tasks require that the original historical documents 
be converted to texts before feeding into LLMs. This is because the LLMs employed in this work are designed to 
process textual inputs. Thus, the tasks heavily depend on the accuracy of the text conversion process used (e.g., 
OCR). However, even the best text conversion techniques still struggle to achieve 100% accurate text conversions 
from documents such as PDFs and images. To deal with this challenge, it is recommended to further advance 
text extraction techniques to improve the accuracy and quality. Integrating computer vision techniques or 
machine learning algorithms could be a potential area. An alternative path to improving text extraction quality 
is to utilize large multi-modal models that can extract textual information from the images directly. This is a 
promising direction for future research.

Improve the capabilities of LLMs
The technology of LLMs advances rapidly in terms of new models, increased parameter sizes, and capabilities42. 
However, given that numerous LLMs are available from both the private and public domains, exploring other 
LLMs is necessary to get a better result. In this paper, we mainly focused on testing Llama 2 models. As discussed 
in Section 3, Llama 2, despite the use of various prompts, changes in model parameter sizes, and the incorporation 
of the chain-of-thought strategy, could not achieve precisely correct information extraction from historical well 
documents. Therefore, it is worth testing other LLMs for the same task.

Many commercial LLM-based tools are available for document processing and information extraction, 
including Amazon Textract, OpenAI’s GPT-4, and Google Document AI. For instance, we used Google 
Document AI’s Enterprise OCR for the text conversion task in this study. Generally, these commercial models 
or tools deliver better performance than some open-source models, likely due to their larger model sizes. 
However, commercial LLMs have certain limitations compared to smaller open-source models. First, due to 
their commercial nature, users must pay for access, which can increase costs. Second, proprietary models like 
GPT-4 come with potential data security concerns. For example, some cloud-based tools require documents to 
be uploaded to the cloud for processing. These requirements may limit their applicability in certain industrial 

State name Location Depth

Colorado 99.33% 97.33%

Pennsylvania 30% 50%

Table 7.  Information extraction results using Mixtral 8×7B model with Prompt 4 for Colorado and 
Pennsylvania well reports.
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and governmental contexts. Smaller open-source models, such as Llama 2 70B, can offer a balanced solution, 
providing cost-effective and more secure options for various tasks. Specifically, once downloaded, they can be 
used directly on appropriate hardware without incurring additional costs related to utilization of the models. 
Additionally, they can operate offline and locally, without the need to upload data to a cloud environment. Given 
the rapid development and advancement of LLMs, it is expected that more advanced open-source LLMs will 
become available to the public.

Another opportunity lies in fine-tuning the pre-trained LLMs for specific tasks. In this work, we focused 
solely on the zero-shot learning strategy, without performing any fine-tuning. However, fine-tuning LLMs could 
potentially be a better option, if feasible. Currently, we are investigating the improvement of fine-tuned LLMs 
for information extraction and will report their findings on performance in a future publication. Furthermore, 
it is also possible to incorporate large multi-modal models for information extraction. Specifically, these models 
can directly take images or PDFs as inputs, eliminating the need for text conversion using OCR techniques. 
Although not employed in this study, it is also advisable to implement some post-processing procedures to 
enhance the information extraction performance.

Overcome the challenges of extreme hardware requirements
In order to use these LLMs offline, we must meet the hardware requirements, especially regarding GPUs due to 
the extremely large size of the LLMs. For example, according to the Hugging Face data repository, the total size 
of the standard version of Llama 2 70B-chat-hf is approximately 280 GB. Additionally, Hugging Face suggests 
using 4 × NVIDIA A100 GPUs for the deployment of Llama 2 70B models. While using the pre-trained LLMs as 
presented in this paper does not demand extensive computational resources, it still requires higher-end GPUs to 
run. In the information extraction task, we utilized an NVIDIA RTX A6000 GPU with 48 GB of memory. Even 
with this GPU, we encountered difficulties loading the full standard version of Llama 2 70B model. This was the 
reason for using the quantized Llama 2 models in this study. Specifically, when we applied 4-bit quantization 
to the Llama-2-70B-chat-GPTQ model, the GPU memory usage was approximately 42 GB according to 
Stoelinga43, which fit within the available memory of an NVIDIA RTX A6000. Therefore, the extreme hardware 
requirements may hinder the wide applications of LLMs. One way to address this challenge is through using 
more advanced GPUs. Given the recent rapid advancements in GPU technology, the situation should continue 
to improve. Additionally, the development of smaller LLMs could also be a viable solution. Another alternative 
is to use commercial LLMs that are only available through an API if costs and data security are not concerns.

Concluding remarks
In this work, we presented an LLM-based workflow to extract vital information from well records for orphaned 
well management, including the well’s location and depth. Extracting data from historic records is currently 
a time-consuming and costly process. The information contained in well records is critically important for 
successful plugging operations to reduce environmental impacts such as methane leakage from wellbores. To 
demonstrate the capability of information analysis workflow, we primarily focused on Llama 2 models, which are 
publicly available. To facilitate information extraction, we developed multiple prompts, varying the instructions 
from the simplest to the most complex one. Different variants of Llama 2 were also evaluated, including the 7B, 
13B, and 70B models. Additionally, we also employed the chain-of-thought approach in an attempt to enhance 
performance. We tested the developed workflow using a dataset of 160 well records. Although this number is 
quite small, the goal of this paper is to prove the concept of this method. We emphasize that these forms are used 
only for validation of the approach, not for training the models. The development of an information extraction 
framework capable of handling much larger datasets of well documented information is an ongoing project.

Several major conclusions can be drawn from the results. First, the content of the prompt impacts the final 
extraction results, even when an identical LLM is used. In this work, we found that Llama 2 70B model with 
Prompt 4 led to the best performance. The general trend is that the information extraction performance improves 
with the complexity of the prompt instructions. Therefore, it is recommended to optimize prompt content before 
using LLMs. Second, the size of the model is an important parameter that influences the result. With Llama 2 
models, better performance was often obtained when a larger model was used. For example, Llama 2 70B model 
outperformed the smaller models, including the 7B and 13B variants. Third, although Llama 2 models achieved 
100% accuracy for the Colorado reports, they still had difficulties in correctly extracting information from some 
Pennsylvania well reports. For example, Llama 2 70B extracted the correct location information in the units of 
degrees, minutes, and seconds after incorporating a chain-of-thought strategy, but it did not accurately convert 
it into decimal degrees as instructed.

While the developed workflow achieved good performance, especially for the PDF-based documents, 
opportunities for further improvement still remain. These include: (1) improving the quality of text conversion 
from historical documents, since the current workflow relies heavily on that; (2) fine-tuning the pre-trained 
LLMs for this specific task using a smaller dataset; (3) executing these information extraction tasks on higher-
end hardware to enhance the results; (4) utilizing large multi-modal models that can directly process PDFs and 
images, thereby eliminating the need for text extraction; and (5) utilization of LLM function calling techniques 
to aid the LLM with routine tasks like converting. These techniques could automate significant portions of the 
extraction workflow, accelerating the plugging of abandoned wells and enabling large-scale data collection for 
research purposes.

Open research section
The well documents analyzed in this manuscript are publicly available. Specifically, Colorado records were 
acquired from the Colorado Energy and Carbon Management Commission’s online system (COGIS): ECMC 
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Data (state.co.us), and Pennsylvania records were acquired from the Pennsylvania Geological Survey’s EDWIN 
online tool: Home - EDWIN Subscriptions (pa.gov). We have permission to use these well records for the 
analysis in this paper.
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