
Vol.:(0123456789)

https://doi.org/10.1007/s13347-021-00451-w

1 3

RESEARCH ARTICLE

Ethics in the Software Development Process: from Codes 
of Conduct to Ethical Deliberation

Jan Gogoll1   · Niina Zuber1 · Severin Kacianka2 · Timo Greger3 · 
Alexander Pretschner1,2 · Julian Nida‑Rümelin1,3

Received: 4 November 2020 / Accepted: 26 March 2021 
© The Author(s) 2021

Abstract
Software systems play an ever more important role in our lives and software engineers 
and their companies find themselves in a position where they are held responsible for ethi-
cal issues that may arise. In this paper, we try to disentangle ethical considerations that 
can be performed at the level of the software engineer from those that belong in the wider 
domain of business ethics. The handling of ethical problems that fall into the responsibil-
ity of the engineer has traditionally been addressed by the publication of Codes of Ethics 
and Conduct. We argue that these Codes are barely able to provide normative orienta-
tion in software development. The main contribution of this paper is, thus, to analyze the 
normative features of Codes of Ethics in software engineering and to explicate how their 
value-based approach might prevent their usefulness from a normative perspective. Codes 
of Conduct cannot replace ethical deliberation because they do not and cannot offer guid-
ance because of their underdetermined nature. This lack of orientation, we argue, triggers 
reactive behavior such as “cherry-picking,” “risk of indifference,” “ex-post orientation,” 
and the “desire to rely on gut feeling.” In the light of this, we propose to implement ethical 
deliberation within software development teams as a way out.

Keywords  Ethics · Codes of ethics · Codes of conduct · Software development

1  Introduction

Software systems play an increasingly important role in our lives. The public 
debate focuses in particular on systems that decide or support decision making 
on high-stake issues that affect third parties such as probation or creditworthiness 

 *	 Jan Gogoll 
	 Jan.gogoll@bidt.digital

1	 Bavarian Research Institute for Digital Transformation, Munich, Germany
2	 Technical University of Munich, Munich, Germany
3	 LMU Munich, Munich, Germany

Published online: 21 April 2021

Philosophy & Technology (2021) 34:1085–1108

/

http://orcid.org/0000-0002-0705-2191
http://crossmark.crossref.org/dialog/?doi=10.1007/s13347-021-00451-w&domain=pdf


1 3

(Eubanks, 2018; Noble, 2018; O`Neil, 2017). As our reliance on software-sup-
ported decisions increases, the demand for ethically sound software becomes 
more urgent. Software manufacturers find themselves in a position in which they 
are held responsible for unwanted outcomes and biases that are rooted in the use 
of software or its development process (or—in case of AI—the way the soft-
ware “learned” (was trained) and the data that was selected for this training or 
“learning” process). In this article, we use the term software engineer broadly to 
include anyone who has a technical impact on the design of the product including 
programmers, database experts etc. working in an agile environment. In short, 
everyone involved and organized in agile teams during the development process. 
While it seems inappropriate and short sighted to shift responsibility entirely to 
developers, software companies still feel the need to address these issues and pro-
mote ethically informed development for two main reasons: Firstly, companies 
face backlash from unethical software in legal as well as in reputational terms. 
Secondly, companies and their employees have an intrinsic motivation to create 
better and ethically sound software, because it is the right thing to do.

In this paper, we will first briefly clarify the domain of the problem. Not every 
ethical challenge a software company faces should be dealt with at the software 
developer level (or the development team level). In fact, many possible ethi-
cal issues, for instance, the question if a specific software tool should be devel-
oped at all, fall into the wider domain of business ethics. After we have speci-
fied the opportunities and the domain of influence the software engineer actually 
has regarding the implementation of ethical values, we analyze one common 
approach to assist software engineers in their ethical decision making: Codes of 
Ethics and Codes of Conduct.

Here we will show why Codes of Ethics and Codes of Conduct (in the following 
the terms will be used interchangeably or simply referred to as CoCs) are insuffi-
cient to successfully guide software engineers (SE). We identify five shortcomings 
of CoCs that make them ill equipped to provide guidance to the engineer. Finally, 
we will argue that an approach built on an ethical deliberation of the software engi-
neer may be a way to enable SEs to build “ethically sound” software.

2 � The Responsibility of Ethical Decision Making in Software 
Companies

It is of crucial importance to define the domain, the scope, and the limit of ethical 
considerations that can be performed by software engineers and their respective 
teams before we can address the question of what ethical software development 
should and can do. Many issues that seem to be the result of software (and its 
development and use) are actually the result of certain business models and the 
underlying political, legal, and cultural conditions. Therefore, these challenges 
need to be addressed at the level of business ethics rather than within the devel-
opment process of software. As an example, consider the implications for the 

1086 J. Gogoll et al.



1 3

housing and rent markets that stem from the adoption of services such as Airbnb. 
This paper is not so much concerned with these questions but with a somewhat 
narrower domain: After a business decision including ethical considerations has 
been made at management level, the development teams still have some leeway 
in deciding how to exactly develop the product. It is important to note that the 
amount of influence of management and development teams changes over time. 
While the former has exclusive decision making power in the early stages (for 
instance the decision whether a software should be created at all etc.), manage-
ment has little control and influence in the development of a software product. 
The developers, experts in this very technical domain, develop the product within 
the given parameters. Naturally, these parameters will never be completely deter-
mined. Therefore, the development team has some leeway in the development of 
the product. An example is this: Imagine a care home facility where many elderly 
people do not drink enough water. A software engineer is tasked with implement-
ing a technical solution that incentivizes drinking water. The setting is a smart 
care home and a smart cup is used to estimate how much water a person drinks in 
a day. Out of all the possible options and after some, we assume, sloppy delibera-
tion, it was decided to link the cup to the smart TV and turn off the patient’s TV, 
if they did not match their water quota. When asked why the developer chose that 
option, he answered that it met all technical requirements. Since he knows that 
the elderly love nothing more than their TV shows, they are sure to react to this.

While the feature in the example above has a clear impact on the ethical “side 
effects” of the overall system, it is also clear that many decisions will have no such 
impact. Whether a developer uses a for or a while loop to count to 100 makes no dif-
ference; in fact, both versions might result in exactly the same machine instructions. 
If a solution is recursive or iterative might impact performance, but will usually have 
no larger side effects. At the same time seemingly innocent design decisions can 
have a huge impact: choosing a binary datatype for a field in the database to store 
a person’s gender reinforces this stereotype.1 The way a software developer decides 
to store names might exclude most people on earth.2 The layout and the technical 
design of websites might exclude certain groups from using them.3 So while most 
decisions a software developer makes will have few, if any, ethical side effects, some 
decisions can have a disproportionate impact. Even if it is not possible to foresee 
all future uses and contexts of a piece of code, it is nonetheless crucial to integrate 
ethical deliberation at the base of the development process to turn ethical delibera-
tion from a chore into a rational habit. Therefore, the development and incorporation 

1  For example, ISO 5218 specifies four values: “not known” (0), “male” (1), “female” (2), and “not 
applicable” (9), notably not offering a choice for non-binary persons. The data company Trifacta, for 
example, offers a dedicated “gender” data type; it can have two values: male and female (https://​docs.​trifa​
cta.​com/​displ​ay/​DP/​Gender+​Data+​Type).
2  For a list of common errors, see https://​www.​kalzu​meus.​com/​2010/​06/​17/​false​hoods-​progr​ammers-​
belie​ve-​about-​names/. For a technical more technical example, just focus on Western European names, 
see: https://​www.​sqlse​rverc​entral.​com/​artic​les/​proper-​stora​ge-​and-​handl​ing-​of-​perso​nal-​names
3  For design guidelines for visually impaired persons, see: https://​fuzzy​math.​com/​blog/​impro​ve-​acces​
sibil​ity-​for-​visua​lly-​impai​red-​users/. For the problem that javascript can cause screen readers, see: https://​
medium.​com/@​matuzo/​writi​ng-​javas​cript-​with-​acces​sibil​ity-​in-​mind-​a1f6a​5f467​b9

1087Ethics in the Software Development Process: from Codes of Conduct…

https://docs.trifacta.com/display/DP/Gender+Data+Type
https://docs.trifacta.com/display/DP/Gender+Data+Type
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.sqlservercentral.com/articles/proper-storage-and-handling-of-personal-names
https://fuzzymath.com/blog/improve-accessibility-for-visually-impaired-users/
https://fuzzymath.com/blog/improve-accessibility-for-visually-impaired-users/
https://medium.com/@matuzo/writing-javascript-with-accessibility-in-mind-a1f6a5f467b9
https://medium.com/@matuzo/writing-javascript-with-accessibility-in-mind-a1f6a5f467b9


1 3

of ethical principles in software engineering enables the combination of proactive 
technology ethics4 with normative ethics. This highlights how real-life actions and 
semantic contexts are mediated and transformed by the deployment of software 
(systems) (c.f. Reijers & Coeckelbergh, 2020; Vallor, 2016). Such an approach to 
software engineering requires empowered individuals on the one hand and proper 
structural conditions that allow for such a normative method to flourish on the other. 
Because agile processes (at least in theory and if implemented correctly) foster indi-
vidual empowerment while providing structural empowerment, we focus on ethical 
deliberation embedded in them. It is clear that not all software is developed in an 
agile manner. Yet, a large proportion of companies have implemented or are plan-
ning to implement agile development according to surveys (Digital.ai, 2020; Hewl-
ett, 2017; Koning & Koot, 2019). In fact, the popularity of agile methodologies has 
constantly increased over the last decade. It is often argued that “empowerment and 
involvement in decision making are often seen as core strengths of agile” (Drury 
et al., 2012) and only when the developer feels empowered to make his or her own 
decisions about the design and the implementation of a product, normative delibera-
tions can be meaningfully employed at the level of the individual developer. Thus, 
agile processes can enable ethical deliberation by providing a structure that enables 
ethical deliberations, because the sharing of information between team members is 
explicitly encouraged and individuals interact constantly and on a daily basis.

The question then is as follows: How should software engineers approach ethical 
questions and what tools may facilitate ethical considerations? Figure 1 provides an 
overview of the different levels of ethical decision making in a company. This graph 
is obviously a stark simplification of reality, but it helps to illustrate the fact that 
many decisions have already been made before tasks are assigned to developers.

Consider the following example: Technological progress enables us to build 
a robot that offers support to the elderly which includes a potentially wide vari-
ety of tasks that may cover the entire field of geriatric care. Figure 1 illustrates 
the different layers of ethical decision making (pertaining to manufacturing the 
robot). Every organization is embedded into a web of social expectations, legal 
requirements, and cultural norms. In our example, it is politics and a societal 
discourse that establish if nursing robots are desirable at all. The eventual con-
sensus is influenced by developments such as demographic transition in devel-
oped nations, the political goal of providing care for senior citizens, and the 
capacity of the healthcare system. Once it has been established that it is legal to 
build a specific product or artifact and a societal consensus has more or less been 
reached, the technology may be tested (and introduced) and the management of 
a company can then decide to manufacture the product (for an extreme example, 
consider the weapon industry). Next, a project team within the company will 

4  We understand the term proactive information ethics, as a normative procedure taking place continu-
ously within the design process and thus influencing the shape of the artifact. Different concepts were 
developed to address such an approach to technology ranging from Brey’s anticipatory technology eth-
ics, Floridi’s constructions approach, Palm and Hansons ethical technology assessment, or Boenik et al. 
just to mention a few. In this paper, we cannot go into highlighting differences or similarities of their 
concepts and the integration into our ethical method (see for example Moor, 1985; Floridi, 1999, 2013 
esp. Chapter 8; Verbeek, 2005, 2011; Brey, 2011, 2012; Palm and Hansson, 2006; Boenink et al., 2010).

1088 J. Gogoll et al.



1 3

decide on the exact specifications of the product. The nursing robot’s design can 
focus on different geriatric aspects, e.g., to only assist human care workers, to be 
fully autonomous in its care for an elderly human, or to be deployed in specific 
places only such as hospitals where the robot’s activity is subject to strict limi-
tations and under constant human supervision. This initial requirements elici-
tation phase already addresses and decides several ethical questions. It is then 
only within the narrow confines of these specifications that a developer can and 
should influence the product’s design. Developers can, for example, choose a 
technology that protects the user’s privacy but still ensures the achievement of 
established business objectives. Our care robot might use video to interact with 
a patient, but it is perhaps possible to store the data in a privacy-preserving way, 
or even to design the robot in such a way that the data does not need to be stored 
at all. Even small components of the robot can have disproportionate ethical side 
effects. For example, if the robot can only be named using ANSI characters, it 
could not have a native name in most of the world. If the robot’s software is 
built in such a way that it can only have a male and a female personality, it 
might make extending it to a third gender prohibitively expensive. Of course, if 
the software engineer realizes that a major higher-level ethical issue might have 
been overlooked and not taken into consideration, she has a duty to clarify and 
check whether the issue has indeed been overlooked. Table 1 provides an over-
view of different ethical questions as well as which actors make decisions and 
where ethical deliberation should be located.

Fig. 1   The domain of EDAP and the different responsibilities

1089Ethics in the Software Development Process: from Codes of Conduct…



1 3

Ta
bl

e 
1  

T
he

 d
iff

er
en

t l
ev

el
s o

f e
th

ic
al

 is
su

es
 in

 th
e 

so
ftw

ar
e 

en
gi

ne
er

in
g 

pr
oc

es
s

D
om

ai
n

Is
su

e
O

ut
pu

t
A

ct
or

s

1.
 P

ol
iti

cs
Sh

ou
ld

 th
e 

el
de

rly
 b

e 
ta

ke
n 

ca
re

 o
f b

y 
ro

bo
ts

?
Le

ga
l f

ra
m

ew
or

k,
 so

ci
et

al
 

an
d 

cu
ltu

ra
l c

on
di

tio
ns

So
ci

et
y

2.
 S

tra
te

gy
/b

us
in

es
s e

th
ic

s;
 c

or
po

ra
te

 so
ci

al
 re

sp
on

si
bi

l-
ity

; c
or

po
ra

te
 d

ig
ita

l r
es

po
ns

ib
ili

ty
Sh

ou
ld

 w
e 

bu
ild

 a
 ro

bo
t t

ha
t s

up
po

rts
 a

nd
 c

ar
es

 fo
r 

th
e 

el
de

rly
? 

W
ha

t i
s t

he
 b

us
in

es
s m

od
el

?
Pr

oj
ec

t (
ap

pr
ov

ed
)

C
om

pa
ny

/in
sti

tu
tio

n

3.
 P

ro
du

ct
 c

on
ce

pt
ua

liz
at

io
n 

(e
.g

., 
de

si
gn

 th
in

ki
ng

)
W

ha
t c

ap
ab

ili
ty

 sh
ou

ld
 th

e 
ro

bo
t p

os
se

ss
?

(c
on

cr
et

e)
 R

eq
ui

re
m

en
ts

Pr
oj

ec
t t

ea
m

, s
ub

di
vi

si
on

 e
tc

4.
 D

ev
el

op
m

en
t p

ro
ce

ss
 (e

.g
., 

sc
ru

m
)

H
ow

 d
o 

w
e 

im
pl

em
en

t c
on

cr
et

e 
fe

at
ur

es
 c

on
si

de
r-

in
g 

th
e 

gi
ve

n 
(a

bo
ve

) p
ar

am
et

er
s?

Pr
od

uc
t

de
ve

lo
pm

en
t t

ea
m

1090 J. Gogoll et al.



1 3

Once we reach the phase of development, the decision to build the robot has 
already been made, the business model has been chosen and specific demands have 
been outlined. Any remaining ethical questions must be dealt with by the software 
engineer or the development team. Of course, there are differences between com-
panies and corporate culture which in turn influences the degree of management’s 
involvement and to what extent it fosters ethical decision making at the development 
level. Yet, the developer usually has the greatest influence in translating ethical con-
siderations into the product, when it comes to the implementation of the pre-defined 
parameters into software. If, as should be the case in agile organizations, teams are 
given high-level problems, e.g., “Find a way to keep birds off some property,” an 
ethical deliberation at the engineer level will help to make explicit different options 
and weigh them in terms of ethical considerations, such as:

•	 A team member with a background in construction might suggest using 
spikes on rims and poles where birds like to sit.

•	 One with a background as a falconer might suggest getting a falcon to scare 
off other birds.

•	 A sound engineer might suggest using high-pitched noises.
•	 An environmental activist will suggest catching and relocating the birds.

This example illustrates the possibilities and the sphere of influence of the 
engineer. It cannot and should not be the case that the engineer in this example 
has to decide whether it is ethically justifiable to limit the movement of birds at 
all. Rather, given the constraints set at higher levels and through decisions made 
earlier in the process, the engineer should focus on ethical considerations that 
are in her domain and where she can assert influence.

Now that we have established the domain in which software engineers have 
“ethical” influence over an outcome, the question is as follows: How do we 
enable engineers to build software ethically and how do we adequately consider 
potential ethical issues and find solutions to these questions?

We have to acknowledge the fact that software engineers are usually not spe-
cifically educated in ethics and have not had intensive training or other experi-
ence in this domain. A prominent method to address the mismatch between the 
lack of ethical training and the impact a product might have and, therefore, the 
ethical attention it should receive has been the publication of Codes of Ethics 
and Codes of Conduct. In the following chapter, we argue that this approach is 
ill equipped to achieve its intended purpose of being a useful guideline for soft-
ware engineers.

3 � Codes of Conduct and Codes of Ethics

Codes of Ethics and Codes of Conduct have been published in order to give ethi-
cal guidance to engineers and management.

CoCs, for instance, published by institutions such as IEEE (Institute of Electri-
cal and Electronics Engineers) and the ACM (Association of Computer Machinery), 

1091Ethics in the Software Development Process: from Codes of Conduct…



1 3

supranational institutions such as the EU High-Level Expert Group on AI and 
UNDP, or the tech industry (Whittlestone et al., 2019), have a central, (self-)regula-
tory function in the discourse on the development of ethically appropriate software 
systems. They represent a more or less sufficiently complete and mature surrogate 
of various normative positions, values, or declarations of intent, which ought to be 
implemented in an adequate form in the process of software development.

The main contribution of this paper is to analyze the normative features of 
CoCs in software engineering and to explicate how their value-based approach 
might prevent their usefulness from a normative perspective. To this end, we 
identify the most prominent kinds of values and principles in these codes, what 
kind of normative guidance they can provide and what problems might arise from 
those CoCs that uphold a plethora of abstract values.

3.1 � Codes of Conduct, Values, and Principles in AI and Software Engineering

Codes of Ethics (CoEs) or Codes of Conduct (CoCs) are intended to provide 
guidance to engineers who face ethically relevant issues and provide them with 
an overview of desirable values and principles. The ACM Code of Ethics and 
Professional Conduct—for example—declares that:

“Computing professionals’ actions change the world. To act responsibly, 
they should reflect upon the wider impacts of their work, consistently sup-
porting the public good. The ACM Code of Ethics and Professional Con-
duct (“the Code”) expresses the conscience of the profession.
The Code is designed to inspire and guide the ethical conduct of all com-
puting professionals, including current and aspiring practitioners, instruc-
tors, students, influencers, and anyone who uses computing technology in an 
impactful way” (Gotterbarn et al., 2018).

Furthermore, the ACM Code demands that computer professionals act in 
accordance with their general principles. The normative character of rules in the 
code suggests that engineers should behave as indicated and are judged accord-
ingly. Partly, they are designed as self-commitment but also include punishable 
legally binding obligations. Of course, CoCs address a specific professional area 
and, therefore, remain specific in their formulation of certain values. Neverthe-
less, when we consider the nominative function of codes, the specification loses 
urgency, i.e., when we consider the normative requirements that codes should 
fulfill. We find the same normative requirements across all industries: “They are 
guiding principles designed to maintain values that inspire trust, confidence and 
integrity in the discharge of public services” (Secretariat Treasury Board, 2003).

There is a plethora of CoCs that address software engineers in general and develop-
ers working with artificial intelligence in particular. Initially, CoCs were introduced 
by businesses as a response to increasing problems of corruption and misbehavior in 
business practices. Over the years, the adoption of CoCs has spread to many other 
domains, especially engineering and medicine, but also business. Davis (1998) has 

1092 J. Gogoll et al.



1 3

argued that “a code of professional ethics is central to advising individual engineers 
how to conduct themselves, to judging their conduct, and ultimately to understanding 
engineering as a profession.” CoCs would thus serve three main purposes: Firstly, they 
guide the individual engineer and help to avoid misbehavior. Secondly, they serve as a 
benchmark for other actors in a profession to judge potential behavior as unethical and 
thereby contributing to the reputation of the profession as a whole. Finally, they help 
to define the self-image of a profession by setting a rulebook for what a professional 
actor should or should not do—this might be particularly relevant for a comparatively 
young field such as software engineering. Schwartz (2001) outlines eight metaphors 
that describe how individuals may interpret CoCs: as a rulebook, a signpost, a mirror, 
a magnifying glass, a shield, a smoke detector, a fire alarm, or a club (ibid.).

Questions of the CoCs’ effectiveness, however, have been raised early on. Schwartz 
(2001) conducted 57 interviews in the domain of business ethics and reported that 
less than half of the codes actually influence behavior. Kaptein and Schwartz (2008) 
find mixed results regarding the relationship between CoCs and corporate social 
responsibility performance of companies. More recently and specifically examin-
ing CoCs for software engineers, McNamara et al. (2018) have conducted a vignette 
experiment to test the influence of CoCs on developers. They found no correlation, 
stating that “explicitly instructing participants to consider the ACM code of ethics in 
their decision making had no observed effect when compared with a control group” 
(ibid.). While the jury is still out on the empirical effectiveness of CoCs, this paper is 
not overly concerned with this issue. Rather, we attempt to show that CoCs conceptu-
ally fail in various ways when it comes to their main goal: providing ethical guidance 
to software engineers who find themselves in uncertain situations.

Some research has been conducted that compares ethical codes and their values 
and tries to quantify them with the goal of establishing a potential consensus. The 
main focus of the current literature has been on CoCs that deal with the develop-
ment of artificial intelligence systems.

Jobin et  al. (2019), for instance, coded 84 documents within the domain of AI 
CoCs and summarized eleven main principles (ordered according to the number of 
documents that contain the principle, descending): transparency, justice/fairness, 
non-maleficence, responsibility, privacy, beneficence, freedom/autonomy, trust, sus-
tainability, dignity, and solidarity. With “transparency” mentioned in 73 out of 84 
(87%) to “solidarity” with 6 mentions (7%), Fjeld et al. (2020) explicitly undertook 
the task of analyzing CoCs to “map a consensus” (on the importance of principles) 
within the industry and the relevant governmental and NGO players. They, too, find 
principles similar to Jobin et al. (2019). They structure the content of the codes within 
“themes” which consist of values and principles that can reasonably be subsumed 
under aforementioned content. They list eight themes in total: privacy, accountability, 
safety and security, transparency and explainability, fairness and non-discrimination, 
human control of technology, professional responsibility, and promotion of human 
values. As mentioned above, a theme consists of a set of principles. In the case of 
“privacy,” for instance, these principles are “Consent, Ability to Restrict Processing, 
Right to Erasure, [(Recommendation of)] Data Protection Laws, Control over the 
Use of Data, Right to Rectification, Privacy by Design, and Privacy (Other/General)” 
(ibid.). Hagendorff (2020) comes to similar results stating that “especially the aspects 

1093Ethics in the Software Development Process: from Codes of Conduct…



1 3

of accountability, privacy, or fairness appear all together in about 80% of all guide-
lines and seem to provide the minimum requirements for building and using an ‘ethi-
cally sound’ AI system” (ibid.). Floridi and Cowls (2019) identified five principles 
such as beneficence, non-maleficence, autonomy, justice, and explicability by analyz-
ing six high-profile initiatives established in the interest of socially beneficial AI.

3.2 � Codes of Conduct and Their Normative Features

Although there are overlaps in the listed values (Floridi & Cowls, 2019), such as pri-
vacy and fairness, the recommendations for action derived from these values vary: 
The normative concepts that are identifiable in the CoCs (henceforth: “values”) differ 
in their accentuation of content depending on the originator (NGOs, GOs, companies, 
civil, and professional actors) (Zeng et al., 2018), on the addressed product (drones, 
social platforms, work tracking tools, …) as well as on the target group (technical 
companies, technical professionals, civil society, regulators, citizens). The tech-pro-
ducer-user-differentiation highlights that each actor issues different CoCs targeting 
different interests and necessities arising from their products or users (Morley et al., 
2019). This means that the respective CoCs always pertain to a certain perspective. 
Hence, analyzing and addressing ethical recommendations of actions need to take 
these distinctions into account: origin, product dependency, and target group. Due 
to this differentiation of interest and purpose, it is clear that striking differences exist 
in the prevalence of values as well as in their quality. Zeng et al. (2018) find that the 
average topic frequency differs depending on the nature of the actor (government vs. 
academia/NGO vs. corporations). The issue of privacy, for instance, is highly pre-
sent in government-issued CoCs, but (statistically) significantly lower in CoCs issued 
in the academics and—even lower—in the corporate sector. These divergences can 
explain why CoCs converge on some core values, but at the same time differ tre-
mendously in the emphasis they put on said values as well as on the respective sub-
values. Hence, CoCs range from very abstract core values (such as justice or human 
dignity) to detailed definitions of technical approaches (e.g., data differentiation…) 
(see Jobin et al., 2019). Governmental CoCs, for example, support general and broad 
moral imperatives such as “AI software and hardware systems need to be human-
centric” (EU Guidelines on ethics in artificial intelligence: Context and implementa-
tion (2018), p. 3) without further specification, whereas corporations tend to favor 
compliance issues when taking on privacy (Morley et al., 2019).

4 � An Analytical Approach: Why Software Codes of Conduct Fail 
to Guide

The majority of CoCs agree on core values such as privacy, transparency, and 
accountability. Yet, CoCs diverge as soon as this level of abstraction must be supple-
mented with application-specific details or precise definitions of concepts. Moreo-
ver, we also encounter significant differences in the prioritization of values and a 
derivation of focal points. Given these observations, the question is then: If CoCs 

1094 J. Gogoll et al.



1 3

are in broad agreement on core values, why do they differ in their statements? One 
reasonable explanation is that the difference is rooted in the very nature of values, 
namely their underdetermination. This underdetermination is directly linked to the 
problem that CoCs are barely able to provide normative orientation in software 
development. This lack of orientation, in turn, triggers reactive behavior such as 
“cherry-picking,” “risk of indifference,” and “ex-post orientation,” which we will 
discuss below. Combined, these issues result in a desire to rely on gut feeling, so-
called heuristics, which seemingly support (ethical) decision making without much 
effort. Unfortunately, those shortcuts cannot provide a substitute for proper ethical 
deliberation and, thus, do not allow for a well-considered decision.

4.1 � The Problem of Underdetermination

Numerous CoCs contain values that are central to the ethical handling of software 
and that can hardly be reasonably disputed, such as the respect for human dignity or 
the claim that technology should be developed to serve mankind (humanistic per-
spective, a philosophical stance that puts emphasis on the value and (moral) agency 
of human beings (see Nida-Rümelin & Weidenfeld, 2018; Nida-Rümelin, 2020)). 
Although the normativity of these values is by no means to be questioned or relativ-
ized and these values can certainly claim normative validity, it should be obvious 
that a reduction of an entire value system to these central (meta-)norms is neither 
sufficiently determined in a theoretical sense nor does it lead to immediate useful 
practical implications. Moreover, it is hard or impossible to deductively derive other 
values from these central values. In fact, they rather take on the role of general state-
ments, which on their own cannot provide concrete and, thus, practical guidance. 
A normative value system outlined within a CoC is, therefore, very often under-
determined insofar as it cannot give clear instructions on what ought to be done in 
any specific individual case. As a result, CoCs lack practical applicability, because 
they do not offer normative orientation for specific ethical challenges that occur on 
a regular basis—meaning they fail to achieve what they were initially created for. 
To make matters worse, due to the sheer number of different values proposed in 
the Codes, a fitting ethical value system to justify any possible action can be easily 
found, since no ranking of values can be presented with regard to the specific case 
at hand.

Many CoCs contain a variety of values, which are presented in a merely itemized 
fashion. Without sufficient concretization, reference, contextualization, and explana-
tion, software engineers are left to themselves in juggling different values and com-
pliance with each and every one of them. The nature of the values puts them inevi-
tably in tension with each other when applied to the reality of software engineering 
(e.g., privacy vs. transparency or autonomy/freedom vs. safety). More often than 
not, the implementation of values ultimately requires a trade-off. Consider the exam-
ple of transparency and privacy: Both values are mentioned in the majority of the 
codes, yet, it is generally infeasible to fully comply with both values simultaneously. 
Figure 2 shows a graphical representation of possible trade-offs between them. As 
long as the product is located in the upper right corner of the graph, it is possible to 

1095Ethics in the Software Development Process: from Codes of Conduct…



1 3

improve the situation by either increasing compliance with one value or the other 
(or even both) which means moving closer towards the respective axis of the coordi-
nate system (here: towards the origin). Once the line is reached, however, it becomes 
impossible to increase compliance with one value without decreasing compliance 
with the other. This line is known as Pareto optimality or the efficiency frontier. 
While it is certainly uncontroversial that the goal of software design should be a 
product that is efficiently optimizing the values we wanted to consider, it is by no 
means clear or obvious which point on the line, that is, which one of the many pos-
sible (Pareto optimal) trade-offs, should be implemented. Consider, for instance, the 
case of an app that enables geo-tracking. The trade-off between privacy and trans-
parency looks completely different if this app is used to implement an anti-doping 
regime to monitor professional athletes or as a navigation app that is used by the 
average citizen to find the shortest route to her vacation destination. In the former, 
we might agree that professional athletes should give up more of their privacy in 
order to fight illegal doping, while we are appalled by the fact that the regular user 
of a navigation app is constantly tracked and monitored.

Yet, this is exactly the point where ethical deliberation and moral decision mak-
ing come into play. CoCs, thus, do not offer any help to answer this question. In 
fact, they remain quiet about the very reason software engineers might consult them 
in the first place. The joint CoC from ACM and IEEE, for instance, states that “[t]

Fig. 2   Trade-offs between values and the efficiency frontier. Kearns and Roth (2019) make a simi-
lar point about trade-offs regarding accuracy and fairness in machine learning. In their case, the points 
would be machine learning models

1096 J. Gogoll et al.



1 3

he Code as a whole is concerned with how fundamental ethical principles apply to 
a computing professional’s conduct. The Code is not an algorithm for solving ethi-
cal problems; rather it serves as a basis for ethical decision-making. When thinking 
through a particular issue, a computing professional may find that multiple princi-
ples should be taken into account and that different principles will have different rel-
evance to the issue. Questions related to these kinds of issues can best be answered 
by thoughtful consideration of the fundamental ethical principles” (Gotterbarn et al., 
2018). As long as we deal with win–win situations, CoCs can be applied, but are 
of little use. As soon as we reach the problem of weighing legitimate ethical rea-
sons and values, they become rather useless. It is, therefore, unclear what it means 
that CoCs serve as the basis for ethical decision making when in fact the normative 
deliberation of the software engineer herself would constitute the footing of ethical 
behavior.

4.2 � Unwanted Behavior as a Result of Underdetermination

Cherry‑picking Ethics  Once Pareto optimality is achieved, any increase of com-
pliance with one value must result in a decrease of compliance with the opposing 
one. It follows that in the applied case many different actions can be justified with 
recourse to various values from the same CoC (e.g., individual privacy vs. societal 
welfare). The CoC then becomes a one-stop shop offering an array of ethical values 
to choose from depending on which principle or value is (arbitrarily) deemed rel-
evant in a certain situation (Floridi, 2019). Coherent ethics, however, require that 
ethical theory needs to cohere externally with our moral and general experience, 
beliefs, and conventions. Only then can ethical theory give an account of diverse 
daily (normative) experiences while preserving internal coherence within an ethical 
theory, e.g., using the utilitarian principle to form a consistent system of interrelated 
parts (De George, 2013). Coherent ethics cannot be realized if codes of conduct are 
understood as arbitrary accumulations of values, from which we can select values 
more or less at random. Consequently, CoCs are unhelpful for solving difficult deci-
sion situations as they almost always offer the easy way out: there will always be a 
value which is easy to identify or cheap to apply and implement. That is why CoCs 
lack normative guidance. This is also supported by basic economic theory and expe-
rience. People usually choose the path of least resistance or the cheapest implemen-
tation (Judy, 2009). Unfortunately, this arbitrariness and thriftiness make it virtually 
impossible to achieve a well-founded, coherent normative perspective.

Risk of Indifference  Many CoCs are often underdetermined and offer the possibil-
ity that any one particular Code of Conduct could be used to justify different and 
even contradictory actions. Thus, many Codes of Conduct could foster the danger 
of ethical indifference (Lillehammer, 2017): They offer neither concrete nor abstract 
guidance and the normative function of the CoCs is anything but guaranteed. Addi-
tionally, most codes state obvious and uncontroversial values and ethical goals. In 
fact, their generic nature leaves the reader with the feeling that their gut feeling and 
practical constraints should have the final verdict when it comes to trade-offs.

1097Ethics in the Software Development Process: from Codes of Conduct…



1 3

Ex‑post Orientation  In addition to the problem of broadly stated general values 
lacking practical orientation (meta-values), it is important to understand ethics not 
as a restriction of action, but as an orientation or as an objective towards which the 
action should be directed so that shared ways of life can be supported (Hausman, 
2011). However, since CoCs provide values that need to be considered, but which 
are underdetermined due to their normative character, desired ethical values in their 
abstraction have little influence on the development process. The reason for this is 
that values are not process-oriented and do not include logically the means by which 
they can be achieved. This very nature of values may lead to the fact that values 
are often considered only afterwards and just adapted to actions, but do not align 
action accordingly. This is especially true for the domain of software engineering in 
which every newly developed tool is very context specific and it might be harder to 
bridge from abstract principles to the concrete situation compared to other forms of 
engineering. It is important to stress that ethical deliberation is more than weighing 
conflicting values and assessing consequences. We need to think about the desirabil-
ity of objectives as well as the normative orientation of action contexts into which 
technical artifacts are integrated and we must consider normativity in the course of 
system development. In the course of conceptualizing technical feasibility, we must 
address ethics from within since “(e)thics on the laboratory floor is predicated on 
the assumption that ethical reflection during research and development can help 
to reduce the eventual societal costs of the technologies under construction and to 
increase their benefits” (van der Burg & Swierstra, 2013, p. 2). This is precisely 
what we hope to achieve with our EDAP scheme.

The Desire for Gut Feelings  The underlying motivation or the desired goal of a CoC 
or an ethical guideline in general could be to serve as a heuristic. Heuristics sim-
plify and shorten the deliberation process in order to facilitate decisions. Gigerenzer 
and Gaissmaier (2011) describe them as “efficient cognitive processes, conscious, or 
unconscious, that ignore part of the information. […] using heuristics saves effort.” 
Yet, the use of heuristics in the moral domain seems to be distinctive to their appli-
cation elsewhere, since they are based on “frequent foundation of moral judgments 
in the emotions, beliefs, and response tendencies that define indignation” (Sunstein, 
2009). One prominent example is the connection between disgust and moral judge-
ment (Landy & Goodwin, 2015; Pizarro et al., 2011). Especially, if novel situations 
and previously unseen problems arise, there is little reason to believe that a heuristic 
that might have been a good fit in previous cases will also fit well into the new con-
text. As soon as uncertainties arise because the objectives of actions are conflicting 
and no unerring automatic solution can be achieved by applying dispositions, con-
ventions, or moral rules, the resulting lack of normative orientation must be resolved 
by reflection (Dewey, 1922; Mead, 1923).

In sum, the underdetermination of values due to their universal character makes 
it impossible to deduce all possible specific, concrete applications of said value. 
Therefore, software engineers may make a rather arbitrary and impromptu choice 
when it comes to the values they want to comply with: picking whatever value is 
around or—as economists would say—in the engineer’s relevant set and which often 
justify actions that they want to believe to be right (this effect is called motivated 

1098 J. Gogoll et al.



1 3

reasoning, see Kunda (1990) and Lodge and Taber (2013)). And because of these 
two aspects—the lack of specificity as well as the resulting cherry-picking-mental-
ity—we encounter an attitude of indifference (Spiekermann, 2015). Furthermore, in 
many cases, the system is only checked for normative issues at the end of the devel-
opment process as part of the technology assessment (ex-post orientation). This ten-
dency will most likely not lead to a change in preferences and the conceptualization 
of a software system is inconsistent in terms of its normative dimension as this pro-
cess disregards normativity from the outset. Ultimately, this results in a desire for 
relying on gut feeling and not putting too much thought into it when deciding on 
vague ethical issues. Consequently, we encounter diffuse and unjustified normative 
statements that are barely reliable. However, if we want to shape our world respon-
sibly, we must deliberate rationally to understand and justify what we are doing for 
which cause.

4.3 � Codes of Conduct Cannot Replace Ethical Reflection

At this point, we want to sketch out an alternative to the reliance on abstract values 
in the form of CoCs and instead relocate ethical deliberation deep into the develop-
ment process. As a first step to offer reasonable and well-founded ethical guidance, 
the values affirmed in the CoCs must be made explicit and be classified with regard 
to their respective context-dependent meaning as well as functional positions. Tan-
gible conflicts must be resolved and formed into a coherent structure that guides 
action (Demarco, 1997). This process is a genuinely deliberative one, which means 
it cannot be reasonably expected to be successful by using heuristics or detailed 
specifications that can be provided ex ante. In fact, it is not possible to classify deci-
sion making rules with regard to individual cases, because values as such are con-
text-independent. Software engineers may, thus, need assistance in their technical 
development—speaking philosophically to deliberate on issues rather casuistically 
than applying ethical principles (Jonsen & Toulmin, 1988). And this is exactly what 
we are aiming for by implementing a systematic approach to individual cases. For 
instance, the value “privacy” needs to be handled differently depending on whether 
the context is technical or political. While privacy issues might be addressed tech-
nically (e.g., there might be a possibility to store or process data while ensuring 
privacy), the political discourse about the question of what level or form of data 
collection itself is desirable remains unanswered. Thus, technological artifacts can-
not be just evaluated from one perspective only, but need to be assessed against the 
backdrop of a multitude of categories such as authority, power relations, technical 
security, technical feasibility, and societal values (see also Winner, 1977). Hence, 
an “ethical toolbox” in such a simple form can hardly exist. The ethical delibera-
tion process can neither be externalized nor completely delegated as the example of 
Google and their handling of the “right to be forgotten” requests nicely illustrates 
(Corfield, 2018). For at least some requests to delete a result from the search, it ulti-
mately came down to a software engineer who flagged it as a bug and effectively 
made the final decision without the legal team conducting a final review. Therefore, 

1099Ethics in the Software Development Process: from Codes of Conduct…



1 3

delegation cannot be the single solution to ethical questions, because the ethical 
decision often falls back on the engineer for very practical reasons (specialists are 
expensive or they face an overwhelming workload; there might even be a shortage 
of ethicists who possess enough domain knowledge in software engineering). On the 
contrary, ethical reflection and deliberation can and must be learned and practiced. It 
is a skill rather than a checklist (see also Wedgwood, 2014). Thus, the political goal 
of developing both a general and a specifically effective CoC cannot be methodo-
logically separated from a practice of ethical deliberation and reflection, at least not 
as long as one is not willing to give up on the notions of usability and impact. This 
requires, from an ethical perspective, to raise awareness among all involved—soft-
ware developers in particular—for ethical deliberation and its integration into the 
very process of the production of software systems. Especially regarding software 
development, the task of embedding ethical deliberations to agile environments with 
an emphasis on team empowerment (like SCRUM) seems to be a reasonable, worth-
while, and necessary approach (see also López-Alcarria et  al., 2019). Although 
external ethical expertise can be called upon to guide the common discourse, active 
ethical deliberation remains irreplaceable. This is also the conclusion of the High-
Level Expert Group on Ethical AI:

“Tensions may arise between [...] [ethical] principles, for which there is no 
fixed solution. In line with the EU fundamental commitment to democratic 
engagement, due process and open political participation, methods of account-
able deliberation to deal with such tensions should be established” (EU High-
Level Expert Group on Artificial Intelligence, p. 13).

While McLennan et al. (2020) suggest to include an ethicist in each project and 
every development team seems advantageous, it is hardly sensible or feasible. Not 
only would this produce unjustifiable costs for software companies but, with the 
increase in software development, a trend which will only grow in the future, there 
will also probably be an actual shortage of capable ethicists with a basic understand-
ing of software development. In order to tackle normative questions adequately, it 
is, therefore, crucial to train software engineers in ethical issues and to implement a 
systematized deliberation process. This may very well be achieved by ethicists con-
sulting on ethical deliberations in software development, yet the main goal remains: 
the empowerment of the individual development team regarding ethical deliberation 
and to implement ethics as a skill.

5 � Ethical Deliberation Leads to Good Normative Design

Applied normative deliberation requires a structured, guided, and systematic 
approach to the assessment of values, their trade-offs, and their implementation 
(Zuber et al., 2020). Reflecting ethically upon technical artifacts to justify which fea-
tures are reasonable is not a simple task, since technology is neither only a means to 
a given end, nor is it an end in itself. It also structures our social life. However, as 
Mulvenna et al. (2017) point out, “[w]hile most agree that ethics in design is crucial, 
there is little effective guidance that enables a broader approach to help guide and 

1100 J. Gogoll et al.



1 3

signpost people when developing or considering solutions, regardless of the area, 
market, their own expertise.” This is also due to the fact that there is no such thing 
as one ethical approach that offers a strict principle or line of thought that is appli-
cable to all normative questions with regard to information technological objects 
(e.g., this is one of the main problems with the question of fully autonomous driv-
ing: There is no single ethical principle that fully satisfies all normative positions 
and could be implemented). The field of digital ethics already covers many different 
questions, ranging from computer ethics discussing normative features of the profes-
sional ethos to machine ethics covering questions of how to design moral machines. 
Moreover, in applied ethics deontological or utilitarian principles are often used for 
a case evaluation. Yet, designing objects requires identifying moral issues and to 
react to said issues without limiting oneself to an in-detail argumentation that cov-
ers only a single ethical perspective. Take our daily routines and actions: we rarely 
evaluate all of our options only in terms of their consequences or if they fit some 
universality test as Kant suggested. Making virtues the sole basis of our actions is 
also insufficient as some cases require reflection of the effects of our actions (c.f. 
Nida-Rümelin, 2001, 2020; Ross & Ross, 1930). What is more, it is not possible to 
deduce all of its applications logically or analytically from a single (meta-)value. 
Therefore, the more software systems affect aspects of our daily lives, the greater the 
demand for thoughtful engineering practice in the form of a guided process to ensure 
ethically sound software. Instead of focusing on the search for a single ethical theory 
that is universally applicable, we need to introduce a practice of ethical engineering 
that is founded in theory. Expertise in ethical deliberation is pivotal for identifying 
potential ethical issues and addressing them properly throughout the software devel-
opment process. However, this is not to be confused by an understanding of ethics as 
a theory or pure science, but rather as a way of dealing with normative matters.

This is what we intend to do in our framework “Ethical Deliberation in Agile 
Software Processes” (EDAP) (Zuber et  al., 2020). This approach seeks to norma-
tively align technical objects in a targeted manner, since it enables a goal-oriented, 
rational handling of values in technology design. Thus, we focus on the identifica-
tion of values, their desirability, and, finally, their integration into software systems. 
We try to achieve this in three steps: (1) descriptive ethics, (2) normative ethics, and 
(3) applied ethics. Each step must be considered in relation to the concrete software 
application to be constructed.

(1)	 Descriptive ethics should facilitate access to the world of values: which values 
serve as orientation? Descriptive value analysis, which has emerged from the 
CoCs, is thus integrated into the deliberation process and serves primarily as 
guidance. Software developers become aware of the relevant topics within the 
industry in particular and society in general and identify their companies, socie-
ties, and their own values regarding the object in question.

(2)	 Normative ethics will scrutinize the selected values, evaluate them, and subject 
them to an ethical analysis: Are the software features under construction desir-
able in so far as we would like them to be applied in all (similar) situations (test 
of universality)? Do the benefits outweigh the costs given an uncertain environ-
ment (test of consequentialism)? Which attitudes do software developers, users, 

1101Ethics in the Software Development Process: from Codes of Conduct…



1 3

or managers address explicitly and implicitly? Which dispositions should the 
designed software program promote? Which desirable attitudes are undermined 
(test of virtue ethics)? And finally, how do these answers fit into the desirable 
life, which means the optimization of our decision not only in regard to its con-
sequences but also as the most choiceworthy action in regard to the way of life 
we favor (Rawls, (1971) 2009; DePaul, 1987; Gibbard, 1990; Wedgwood, 2017; 
Nida-Rümelin, 2019, 2020).

(3)	 Applied ethics, then, has to achieve even more: not only must one evaluate the 
individual case in order to reach a decision, but the final normative judgment 
must also account for technical possibilities and limitations—in other words, 
any solution must be technically implementable. The latter is the interface to 
value-sensitive design, which is an “approach to the design of technology that 
accounts for human values in a principled and comprehensive manner throughout 
the design process” (Friedman & Hendry, 2019; Friedman et al., 2002; Nissen-
baum, 2005). It is, therefore, a form of technically implemented ethics and—at 
the same time—an imperative to the technician herself: Be value-sensitive! For 
this reason, we advocate the name “normative design.”

It is of the utmost importance that if human–machine interaction allows for 
human values to be respected, technological artifacts must trace an image of the 
possible normative distortions or amplifications of attitudes, rules, or behaviors that 
result from them: It must be made clear how artifacts structure attitudes and actions. 
This calls for an ethical analysis. George Herbert Mead emphasizes that ethics can 
only suggest the method of dealing rationally with values and that these, in turn, are 
dependent on specific circumstances:

The only rule that an ethics can present is that an individual should ration-
ally deal with all the values that are found in a specific problem. That does 
not mean that one has to spread before him all the social values when he 
approaches a problem. The problem itself defines the values. It is a specific 
problem and there are certain interests that are definitely involved; the individ-
ual should take into account all of those interests and then make out a plan of 
action which will rationally deal with those interests. That is the only method 
that ethics can bring to the individual. (Mead, 1934).

To highlight the impossibility of (logical) reductiveness and, thus, the necessity 
of rational deliberation, consider again the following scenario from the beginning: 
A software and robotics engineering team is tasked to construct a nursing robot for 
the elderly. This system is supposed to take care of individuals, i.e., help them when 
they fall, contact the ambulance in case of an emergency, etc. The first step is to 
hermeneutically understand the scenario. In order to create a normatively appropri-
ate system, it is important to locate the essential desirable values and discuss their 
exclusivity. To this end, one must identify normatively desirable “anchor points” 
and consequently examine them in regard to their relationality. Values and their 
interconnectedness cannot simply be logically derived from the description of the 
situation. In the nursing-robot case, we are concerned with the desirable objective 

1102 J. Gogoll et al.



1 3

of being able to lead a self-determined life for as long as possible. Regarding techni-
cal features, such a system may include a built-in camera and an audio microphone 
to receive voice commands to track the patient’s position in order to guarantee an 
adequate reaction, e.g., calling for help in case of an emergency or assisting in get-
ting back up if no injury is detected. Additionally, the stored data may give doctors 
the possibility to check for progression of dementia or other illnesses or to detect 
potential diseases through interpretation of these images using artificial intelligence. 
Much else is conceivable depending on objectives, funding, technological progress, 
and potential legal issues. Normatively speaking, the system enhances desired core 
values such as autonomy and wellbeing. A nursing robot that is not only techni-
cally robust and safe, but also constructed in accordance with the relevant nor-
mative standards still classifies critical situations, but this is done in a respectful, 
humane manner. In order to create systems that are—at least in principle—norma-
tively adequate, we must ask which values are at risk when promoting autonomy 
by implementing a camera or audio-recording system. In this specific case, privacy 
concerns seem dominant. Thus, we have to ensure privacy while enabling autonomy 
which means, for instance, that people may not want to be filmed naked and do not 
want to disclose the location of their valuables, etc. Furthermore, people may want 
to know who has access to the data, what kind of data is stored, why, and where. 
In a perfect scenario, access to the data is exclusively limited to doctors who may 
use it to predict and treat illnesses (medical prevention). Even these basic norma-
tive considerations cannot be logically derived from the premise of promoting wel-
fare and autonomy. We need to reason normatively to understand and highlight the 
ethical issues at hand while simultaneously using our empirical knowledge of the 
world. Consequently, technical solutions such as visual or audio-recording systems 
must be developed in such a way that they would not record certain scenes at all or 
recording, when medically necessary, must ensure a fair autonomy-privacy ratio by 
using specific techniques such as cartooning or blurring (Padilla-López et al., 2015). 
Other normative issues result from using certain techniques that may meet transpar-
ency requirements. Users want to know how recommendations are made and what 
reactions they can expect. A non-technical normative deliberation is whether it is 
desirable to live with an assistance system even if the system considers relevant nor-
mative aspects. These kinds of ethical concerns are not addressed within our ethi-
cal deliberation tool as we already outlined at the beginning. We focus on software 
development from the engineer’s perspective. Whether or not there should be a nurs-
ing robot in the first place is a question that falls into the domain of (business) eth-
ics and cannot be decided on the level of the software developer. As mentioned at 
the beginning, management needs to tackle these questions and consider the legal 
framework as well as other basic norms of society. The ethical deliberation of the 
developer, however, begins with the specific implementation of the technical object. 
For instance, the above-mentioned need for visual observation seems to be obvi-
ous—after all, the robot needs to “see” its surroundings in order to be a useful tool. 
Yet, there are many ways to implement the visual capabilities of the robot and to 
safeguard the privacy of individuals (cartooning, blurring, etc.). At this point, the 
software developer usually has the freedom (and, therefore, the responsibility) to 
deliberate on which specific implementation to use.

1103Ethics in the Software Development Process: from Codes of Conduct…



1 3

At this point, we would like to go beyond Van der Burg and Swierstra (2013) and high-
light that not only societal costs may be reduced but profits of the developing firm may be 
increased. Taking normative issues seriously from the very beginning of a development 
project may lead to more effective systems and processes—especially in the long run. We 
must understand that technology transforms and systematizes our lives. And that it does 
so with a certain requirement for behavioral adaptation by the user or those affected by the 
system in order to ensure the functionality of the system. Hence, technology normatively 
structures the world we live in. This means we need to take normativity as we encounter it 
in our daily lives seriously and think about the technical artifact as being a part of it. Only 
then can we understand that an ethical deliberation is not only a deliberation of trade-offs. 
Moreover, we can highlight how the artifact can be normatively integrated into our daily 
routines. This means also to think about the compatibility of algorithms, data sources, 
and inputs, such as control commands, and also front-end design, to make sure that some 
desired normative features are technically well met (Friedman & Hendry, 2019; Simon, 
2012). Normativity, thus, is not to be understood as some qualifier, but rather as a condi-
tion that enables specific desirable practices of daily life (Rip, 2013).

6 � A Paradigm Shift: from CoCs to Ethical Deliberation in the Software 
Development Process

CoCs are difficult to use as normative guidelines for technical software development 
due to their underdetermined character. They may trigger behavior such as indiffer-
ence or the cherry-picking of specific ethical values. Thus, they are of little imme-
diate use during the software development processes. Since CoCs lack direct real-
world applicability, ethical values may only be chosen after the product is finished 
depending on which values “fit” (are most compatible with the existing product). 
However, in order to build an ethically sound system, it is essential to consider nor-
mative issues during the development process. Only when integrating values from 
within the development process, engineers will be able to consciously build software 
systems that reflect normative values. This will foster an understanding of how tech-
nological artifacts act as normatively structuring agents and improve the chances of 
creating ethically informed software systems. In contrast to related work, we suggest 
moving from a simple application of “ethical heuristics” to a point where we treat 
ethical thinking as a skill that has to be practiced and can be embedded deeply into 
the software development process. Consequently, ethical deliberation must not be 
limited to ethics councils, company advisory boards, or other special committees. 
Rather, it needs to be practiced and shaped by the software developers who create 
and intricately understand the technical system. This approach would lead to ethi-
cal empowerment of software engineers as part of the general empowerment trend 
that we see in agile software development. It is important to outline that developers 
should only be concerned with ethical issues that belong to their field of competence 
and the area they can actually affect. Ethical issues outside the scope of a single 
developer can then be delegated to other instances of the organization. In this sense, 
the ethical deliberation of software developers can also lead to a positive form of 

1104 J. Gogoll et al.



1 3

whistle blowing when an ethical issue is detected during the implementation process 
that has gone unnoticed by decision makers of the company.

In order to successfully implement ethical deliberation into the software engi-
neering practice, we need to answer two main questions: First, why should compa-
nies build “ethical software” and second, how should they do it?

Since ethical deliberation requires a willingness to invest time and resources, a 
company has to encourage and support its engineers to consider ethical issues and 
discuss different ways to develop a product. Further research is necessary to under-
stand the incentives that might motivate or hinder a company to implement pro-
cesses that will help to address these concerns.

Proper ethical deliberation might, for instance, initially decelerate time to market 
a product. However, once a product has been built based on an ethical deliberation, the 
inclusion of relevant stakeholders might prove to be a key factor regarding customer loy-
alty and appreciation. This is in the spirit of agile software development where it was 
found that “most defects end up costing more than it would have cost to prevent them” 
(Beck & Andres, 2004, Ch. 13). Similarly, ethically informed products might increase a 
company’s reputation, promote its success, and might ultimately even help in creating bet-
ter products. Unfortunately, it is unclear where to best embed such an ethical delibera-
tion into the development process. Agile processes like Scrum suggest holding meetings 
at the beginning and the end of a sprint and it seems likely that these meetings offer a 
natural venue to discuss ethical issues. This, however, has so far not been empirically vali-
dated. The next move, therefore, is to offer an approach that provides guidance on how to 
implement an ethical deliberation into the concrete processes of agile development and to 
empirically research the conditions under which ethically informed software engineering 
can reach its full potential.

Funding  Open Access funding enabled and organized by Projekt DEAL. This study was financially supported 
by the Bavarian Research Institute for Digital Transformation. Declaration statements are not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Beck, K., & Andres, C. (2004). Extreme programming explained: Embrace change. (2nd ed.). Addison-
Wesley Professional.

Boenink, M., Swierstra, T., & Stemerding, D. (2010). Anticipating the interaction between technology 
and morality: A scenario study of experimenting with humans in bionanotechnology. Studies in eth-
ics, law, and technology, 4(2).

1105Ethics in the Software Development Process: from Codes of Conduct…

http://creativecommons.org/licenses/by/4.0/


1 3

Brey, P. A. (2011). Anticipatory technology ethics for emerging IT. CEPE 2011: Crossing Boundaries, 
13, 868.

Brey, P. A. (2012). Anticipatory ethics for emerging technologies. NanoEthics, 6(1), 1–13.
Corfield, G. (2018). Here is how Google handles Right To Be Forgotten requests. The Register. Link: 

https://​www.​there​gister.​com/​2018/​03/​19/​google_​right_​to_​be_​forgo​tten_​reque​st_​proce​ss/#:​~:​text=​
RTBF%​20tri​al%​20Goo​gle%​20all​ows%​20sof​tware​,its%​20int​ernal%​20bug%​2Dhan​dling%​20sys​tems.

Davis, M. (1998). Thinking like an engineer. Studies in the Ethics of a Profession, 143.
De George, R. T. (2013). Ethics and coherence. The American Philosophical Association Centennial 

Series, 717–732.
DeMarco, J. P. (1997). Coherence and applied ethics. Journal of Applied Philosophy, 14(3), 289–300.
DePaul, M. R. (1987). Two conceptions of coherence methods in ethics. Mind, 96(384), 463–481.
Dewey, J. (1922). Human nature and conduct. Henry Holt and Company.
Digital.ai. (2020). The 14th annual State of Agile survey (No. 14), Annual State of Agile Report. Digital.

ai.
Drury, M., Conboy, K., & Power, K. (2012). Obstacles to decision making in Agile software development 

teams. Journal of Systems and Software, 85(6), 1239–1254.
EU High-level expert group on artificial intelligence (2018). Ethics Guidelines for Trustworthy AI. 

https://​ec.​europa.​eu/​futur​ium/​en/​ai-​allia​nce-​consu​ltati​on/​guide​lines#​Top. Accessed 20 Apr 2021.
Eubanks, V. (2018). Automating inequality - How high tech tools profile, police, and punish the poor. St. 

Martin’s Press.
Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled artificial intelligence: 

Mapping consensus in ethical and rights-based approaches to principles for AI. Berkman Klein 
Center Research Publication.

Floridi, L. (1999). Information ethics: On the philosophical foundation of computer ethics. Ethics and 
Information Technology, 1(1), 33–52.

Floridi, L. (2013). The ethics of information. Oxford University Press.
Floridi, L. (2019). The logic of information: A theory of philosophy as conceptual design. (1st ed.). 

Oxford University Press.
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data 

Science Review, 1(1). sie zeigen prinzipien auf, die in den meisten CoCs vorkommen, aber immer 
auf AI.

Friedman, B., & Hendry, D. G. (2019). Value sensitive design - Shaping technology with moral imagina-
tion. MIT University Press.

Friedman, B., Kahn, P., & Borning, A. (2002). Value sensitive design: Theory and methods. University of 
Washington technical report, (2–12).

Gibbard, A. (1990). Wise choices, apt feelings: A theory of normative judgment. Harvard University 
Press.

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic Decision making. Annual Review of Psychology, 
62(1), 451–482.

Gotterbarn, D. W., Brinkman, B., Flick, C., Kirkpatrick, M. S., Miller, K., Vazansky, K., & Wolf, M. J. 
(2018). ACM code of ethics and professional conduct.

Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 1–22.
Hausman, D. (2011). Preference, value, choice, and welfare. Cambridge University Press.
Hewlett, P. (2017). Agile is the new normal: Adopting Agile project management. Hewlett Packard 

Enterprise Development LP.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine 

Intelligence, 1(9), 389–399.
Jonsen, A. R., & Toulmin, S. (1988). The abuse of casuistry: A history of moral reasoning. Univ of Cali-

fornia Press.
Judy, K. H. (2009). Agile principles and ethical conduct. In 2009 42nd Hawaii International Conference 

on System Sciences (pp. 1–8). IEEE.
Kaptein, M., & Schwartz, M. S. (2008). The effectiveness of business codes: A critical examination of 

existing studies and the development of an integrated research model. Journal of Business Ethics, 
77(2), 111–127.

Kearns, M., & Roth, A. (2019). The ethical algorithm: The science of socially aware algorithm design. 
Oxford University Press.

1106 J. Gogoll et al.

https://www.theregister.com/2018/03/19/google_right_to_be_forgotten_request_process/#:~:text=RTBF%20trial%20Google%20allows%20software,its%20internal%20bug%2Dhandling%20systems.
https://www.theregister.com/2018/03/19/google_right_to_be_forgotten_request_process/#:~:text=RTBF%20trial%20Google%20allows%20software,its%20internal%20bug%2Dhandling%20systems.
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines#Top


1 3

Koning, T. & Koot, W. (2019). Agile transformation: KPMG Survey on Agility. KPMG. Retrieved from 
https://​assets.​kpmg/​conte​nt/​dam/​kpmg/​nl/​pdf/​2019/​advis​ory/​agile-​trans​forma​tion.​pdf.  Accessed 20 
Apr 2021.

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108(3), 480–498. https://​doi.​
org/​10.​1037/​0033-​2909.​108.3.​480.​PMID2​270237.

Landy, J. F., & Goodwin, G. P. (2015). Does incidental disgust amplify moral judgment? A meta-analytic 
review of experimental evidence. Perspectives on Psychological Science, 10(4), 518–536.

Lillehammer, H. (2017). The nature and ethics of indifference. The Journal of Ethics, 21(1), 17–35.
Lodge, M., & Taber, C. (2013). The Rationalizing Voter. Cambridge University Press.
López-Alcarria, A., Olivares-Vicente, A., & Poza-Vilches, F. (2019). A systematic review of the use of 

agile methodologies in education to foster sustainability competencies. Sustainability, 11(10), 2915.
McLennan, S., Fiske, A., Celi, L. A., Müller, R., Harder, J., Ritt, K., & Buyx, A. (2020). An embedded 

ethics approach for AI development. Nature Machine Intelligence, 2(9), 488–490.
McNamara, A., Smith, J., & Murphy-Hill, E. (2018). Does ACM’s code of ethics change ethical decision 

making in software development? In Proceedings of the 2018 26th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 
729–733).

Mead, G. H. (1923). Scientific method and the moral sciences. International Journal of Ethics, 33(3), 
229–247.

Mead, G. H. (1934). Mind, self and society. (Vol. 111). University of Chicago Press.
Moor, J. H. (1985). What is computer ethics? Metaphilosophy, 16(4), 266–275.
Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2019). From what to how: an initial review of publicly 

available AI ethics tools, methods and research to translate principles into practices. Science and 
Engineering Ethics, 1–28.

Mulvenna, M., Boger, J., & Bond, R. (2017). Ethical by design: A manifesto. In Proceedings of the Euro-
pean Conference on Cognitive Ergonomics 2017 (pp. 51–54).

Nida-Rümelin, J. (2001). Ethische Essays. Suhrkamp.
Nida-Rümelin, J. (2019). Structural rationality and other essays on practical reason (Vol. 52). Springer.
Nida-Rümelin, J. (2020). Eine Theorie praktischer Vernunft. Walter de Gruyter GmbH & Co KG.
Nida-Rümelin, J., & Weidenfeld, N. (2018). Digitaler Humanismus: eine Ethik für das Zeitalter der kün-

stlichen Intelligenz. Piper.
Nissenbaum, H. (2005). Values in technical design. Encyclopedia of science, technology, and ethics, 

66–70.
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. Combined Aca-

demic Publ
O’Neil, C. (2017). Weapons of math destruction: How Big Data increases inequality and threatens 

democracy. Penguin.
Padilla-López, J. R., Chaaraoui, A. A., & Flórez-Revuelta, F. (2015). Visual privacy protection methods: 

A survey. Expert Systems with Applications, 42(9), 4177–4195.
Palm, E., & Hansson, S. O. (2006). The case for ethical technology assessment (eTA). Technological 

forecasting and social change, 73(5), 543–558.
Pizarro, D., Inbar, Y., & Helion, C. (2011). On disgust and moral judgment. Emotion Review, 3(3), 

267–268.
Rawls, J. (2009). A theory of justice. Harvard University Press.
Reijers, W., & Coeckelbergh, M. (2020). Narrative and Technology Ethics. Palgrave Macmillan.
Rip, A. (2013). Pervasive normativity and emerging technologies. In Ethics on the laboratory floor (pp. 

191–212). Palgrave Macmillan.
Ross, D., & Ross, W. D. (1930). The right and the good. Oxford University Press.
Schwartz, M. (2001). The nature of the relationship between corporate codes of ethics and behaviour. 

Journal of Business Ethics, 32(3), captain 247-262.
Secretariat T. B. (2003). Values and ethics code for the public service. Available at https://​www.​tbs-​sct.​

gc.​ca. Accessed 20 Apr 2021.
Simon, J. (2012). E-democracy and values in design. In Proceedings of the XXV World Congress of IVR.
Spiekermann, S. (2015). Ethical IT innovation: A value-based system design approach. CRC Press.
Sunstein, C. R. (2009). Some effects of moral indignation on law, Vermont Law Review. Vermont Law 

School., 33(3), 405–434.
Vallor, S. (2016). Technology and the virtues: A philosophical guide to a future worth wanting. Oxford 

University Press.

1107Ethics in the Software Development Process: from Codes of Conduct…

https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf
https://doi.org/10.1037/0033-2909.108.3.480.PMID2270237
https://doi.org/10.1037/0033-2909.108.3.480.PMID2270237
https://www.tbs-sct.gc.ca
https://www.tbs-sct.gc.ca


1 3

Van der Burg, S., & Swierstra, T. (Eds.). (2013). Ethics on the laboratory floor. Springer.
Verbeek, P. P. (2005). Artifacts and attachment: A post-script philosophy of mediation. Inside the politics 

of technology, 125–146.
Verbeek, P. P. (2011). Moralizing technology: Understanding and designing the morality of things. Uni-

versity of Chicago Press.
Wedgwood, R. (2014). Rationality as a virtue. Analytic Philosophy, 55, 319–338.
Wedgwood, R. (2017). The value of rationality. Oxford University Press.
Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2019). The role and limits of principles in AI 

ethics: towards a focus on tensions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Eth-
ics, and Society (pp. 195–200).

Winner, L. (1977). Autonomous technology: Technics-out-of-control as a theme in political thought.
Zeng, Y., Lu, E., & Huangfu, C. (2018). Linking artificial intelligence principles. arXiv preprint. https://​

arxiv.​org/​abs/​1812.​04814. Accessed 20 Apr 2021.
Zuber, N., Kacianka, S., Nida-Rümelin, J. & Pretschner, A. (2020): Ethical deliberation for Agile soft-

ware processes: EDAP manual. Hengstschläger, M (ed.): Digital Transformation and Ethics.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

1108 J. Gogoll et al.

https://arxiv.org/abs/1812.04814
https://arxiv.org/abs/1812.04814

	Ethics in the Software Development Process: from Codes of Conduct to Ethical Deliberation
	Abstract
	1 Introduction
	2 The Responsibility of Ethical Decision Making in Software Companies
	3 Codes of Conduct and Codes of Ethics
	3.1 Codes of Conduct, Values, and Principles in AI and Software Engineering
	3.2 Codes of Conduct and Their Normative Features

	4 An Analytical Approach: Why Software Codes of Conduct Fail to Guide
	4.1 The Problem of Underdetermination
	4.2 Unwanted Behavior as a Result of Underdetermination
	4.3 Codes of Conduct Cannot Replace Ethical Reflection

	5 Ethical Deliberation Leads to Good Normative Design
	6 A Paradigm Shift: from CoCs to Ethical Deliberation in the Software Development Process
	References




