
Machine Learning for Automatic Text Analysis:
Tasks, Methods, and Tools

Alejandro Moreo and Fabrizio Sebastiani

Artificial Intelligence for Media and Humanities Lab
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
56124 Pisa, Italy

E-mail: {fabrizio.sebastiani}@isti.cnr.it

Summer School “Digital Tools for Humanists”
Pisa, IT – June 7-16, 2022

Version 1.0
Download most recent version of these slides at

https://bit.ly/3zq6QXX

https://bit.ly/3zq6QXX

Introduction

• Many text analysis tasks are either tedious / expensive / time-consuming /
difficult to carry out; e.g.,

• Coding textual answers returned to open questions in questionnaires (e.g., in
opinion research, market research, customer relationship management)

• Marking a textual comment (on a product, on a political candidate, etc.) as
conveying a positive or a negative opinion about its subject

• Detecting whether a suspect (e.g., John) is the author of an anonymous text
• Checking scientific papers for inclusion in a “systematic review”
• Choosing the most competent examiner for a given patent application
• Assigning subject codes (from a predefined taxonomy) to scientific papers

• Can these tasks be automated to some degree?

• Can we build tools that support the work of humans who carry out these
tasks?

2 / 124

Part I :
Text Classification

3 / 124

• Many text analysis tasks can be framed as classification tasks, i.e., as the
task of predicting / hypothesizing / deciding to which among a predefined
finite set of groups (“classes”, or “categories”) a data item belongs to

• Classification is formulated as the task of generating a hypothesis (or
“classifier”, or “model”)

h : D → C

where D = {x1, x2, ...} is a domain of data items and C = {c1, ..., cn} is a
finite set of classes (the classification scheme, or codeframe)

4 / 124

Introduction

• Coding textual answers returned to open questions in questionnaires (e.g., in
opinion research, market research, customer relationship management)

→ codeframe is the set of codes of interest (Survey Coding)

• Marking a textual comment (on a product, on a political candidate, etc.) as
conveying a positive or a negative opinion about its subject

→ codeframe is {Positive,Negative,Neutral} (Sentiment Classification)

• Detecting whether a suspect (e.g., John) is the author of an anonymous text
→ codeframe is {John,NotJohn} (Authorship Verification)

• Checking scientific papers for inclusion in a “systematic review”
→ codeframe is {Include,DontInclude}

• Choosing the most competent examiner for a given patent application
→ codeframe is the set of available examiners

• Assigning subject codes (from a predefined taxonomy) to scientific papers
→ codeframe is the taxonomy of subject codes

5 / 124

Introduction

• Can classification be automated?

• Can we build tools that support the work of humans who need to classify
text?

• Problems:
• unlike other types of data (e.g., factual data, numerical measurements, etc.),

text requires (subjective) interpretation
→ all the above tasks are non-deterministic

• the variety of linguistic devices that humans use in order to convey meaning is
bewildering

• language use differs across people
• language keeps evolving

• Programming “if-then”rules that automatically classify text is thus
• difficult
• bound to lead to software characterized by low accuracy
• not economical (in terms of both creation costs and maintenance costs)
• too slow for fast-emerging needs

6 / 124

Introduction

• Idea: set up a software that *learns* to carry out the task from examples in
which the task has been performed correctly by competent humans

• Example:
• Task: Assigning subject codes (from a predefined taxonomy) to scientific

papers
• Idea: The software learns to do this by looking at a set of papers whose codes

have been assigned by experts
• Consequence: This software must try to understand the characteristics that

make a paper suitable for assigning it a certain code

• This is the core idea behind supervised machine learning

• This short course is about
• formulating text analysis tasks in terms of text classification
• using machine learning technology to design, implement, and test the resulting

text classification systems

7 / 124

Text Classification

1 Text Classification

2 Applications of Text Classification

3 Supervised Learning and Text Classification

1 Representing Text for Classification Purposes
2 Training a Classifier

4 Evaluating a Classifier

5 Advanced Topics (Hints)

8 / 124

What Classification is and is not

• Classification (a.k.a. “categorization”): a ubiquitous enabling technology in
data science (or: the “mother” of all machine learnable tasks); studied within
pattern recognition, statistics, and machine learning

• Different from clustering, where the groups (“clusters”) and their number are
not known in advance

• The membership of a data item into a class must not be determinable with
certainty (e.g., predicting whether a natural number belongs to Odd or Even
is not classification); classification always involves a subjective judgment

• In text classification, data items are textual (e.g., news articles, treatises,
emails, tweets, product reviews, sentences, questions, queries, etc.) or partly
textual (e.g., Web pages)

9 / 124

Main Types of Classification

• Binary classification: h : D → C (each item belongs to exactly one class) and
C = {c1, c2}

• E.g., assigning emails to one of {Spam, Legitimate}
• Single-Label Multi-Class (SLMC) classification: h : D → C (each item

belongs to exactly one class) and C = {c1, ..., cn}, with n > 2
• E.g., assigning news articles to one of {HomeNews, International,

Entertainment, Lifestyles, Sports}
• Multi-Label Multi-Class (MLMC) classification: h : D → 2C (each item may
belong to zero, one, or several classes) and C = {c1, ..., cn}, with n > 1

• E.g., assigning computer science articles to classes in the ACM Classification
System

• May be solved as n independent binary classification problems

• Ordinal classification (OC): as in SLMC, but for the fact that there is a total
order c1 ⪯ ... ⪯ cn on C = {c1, ..., cn}

• E.g., assigning product reviews to one of {Disastrous, Poor, SoAndSo, Good,
Excellent}

10 / 124

Hard Classification and Soft Classification

• The definitions above denote “hard classification” (HC)

• “Soft classification” (SC) denotes the task of predicting a score for each pair
(d , c), where the score denotes the { probability / strength of evidence /
confidence } that d belongs to c

• E.g., a probabilistic classifier outputs “posterior probabilities” Pr(c|d) ∈ [0, 1]

• E.g., the AdaBoost classifier outputs scores s(d , c) ∈ (−∞,+∞) that
represent its confidence that d belongs to c

• When scores are not probabilities, they can be converted into probabilities via
the use of a sigmoidal function; e.g., the logistic function:

Pr(c|d) = 1

1 + eσh(d,c)+β

11 / 124

Hard Classification and Soft Classification (cont’d)

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-0.2

0.2

0.4

0.6

0.8

1.0
σ=0.20

σ=0.42

σ=1.00

σ=2.00

σ=3.00

12 / 124

Hard Classification and Soft Classification (cont’d)

• In the binary case, hard classification often consists of

1 Training a soft classifier that returns scores s(d , c)
2 Picking a threshold t, such that

• s(d , c) ≥ t is interpreted as predicting c1
• s(d , c) < t is interpreted as predicting c2

• In soft classification, scores are used for ranking; e.g.,
• ranking items for a given class
• ranking classes for a given item

• HC is used for fully autonomous classifiers, while SC is used for interactive
classifiers (i.e., with humans in the loop)

13 / 124

Dimensions of Classification

• Text classification may be performed according to several dimensions
(“axes”) independent of each other

• by topic ; by far the most frequent case, its applications are ubiquitous

• by sentiment ; useful in market research, online reputation management,
customer relationship management, social sciences, political science

• by language (a.k.a. “language identification”); useful, e.g., in query
processing within search engines

• by genre ; e.g., AutomotiveNews vs. AutomotiveBlogs, useful in website
classification and others;

• by author (a.k.a. “authorship attribution”), or by native language (“native
language identification”); useful in philology, forensics, and cybersecurity

• ...

14 / 124

Text Classification

1 Text Classification

2 Applications of Text Classification

3 Supervised Learning and Text Classification

1 Representing Text for Classification Purposes
2 Training a Classifier

4 Evaluating a Classifier

5 Advanced Topics (Hints)

15 / 124

Example 1: Knowledge Organization

• Long tradition in both science and the humanities ; goal was organizing
knowledge, i.e., conferring structure to an otherwise unstructured body of
knowledge

• The rationale is that using a structured body of knowledge is easier / more
effective than if this knowledge is unstructured

• Automated classification tries to automate the tedious task of assigning data
items based on their content, a task otherwise performed by human
annotators (a.k.a. “assessors”, or “coders”)

16 / 124

Example 1: Knowledge Organization (cont’d)

• Scores of applications; e.g.,
• Classifying news articles for selective dissemination

• Classifying scientific papers into specialized taxonomies

• Classifying patents

• Classifying “classified” ads

• Classifying answers to open-ended questions

• Classifying topic-related tweets by sentiment

• ...

• Retrieval (as in search engines) could also be viewed as (binary + soft)
classification into Relevant vs. NonRelevant

17 / 124

Example 2: Filtering

• Filtering (a.k.a. “routing”) using refers to the activity of blocking a set of
NonRelevant items from a dynamic stream, thereby leaving only the
Relevant ones

• E.g., spam filtering is an important example, attempting to tell Legitimate
messages from Spam messages1

• Detecting unsuitable content (e.g., porn, violent content, racist content,
cyberbullying, fake news) is also an important application, e.g., in PG filters or
on interfaces to social media

• Filtering is thus an instance of binary (usually: hard) classification, and its
applications are ubiquitous

1Gordon V. Cormack: Email Spam Filtering: A Systematic Review. Foundations and Trends
in Information Retrieval 1(4):335–455 (2006)

18 / 124

Example 3: Empowering other IR Tasks

• Functional to improving the effectiveness of other tasks in IR or NLP; e.g.,
• Classifying queries by intent within search engines

• Classifying questions by type in question answering systems

• Classifying named entities

• Word sense disambiguation in NLP systems

• ...

• Many of these tasks involve classifying very small texts (e.g., queries,
questions, sentences), and stretch the notion of “text” classification quite a
bit ...

19 / 124

Text Classification

1 Text Classification

2 Applications of Text Classification

3 Supervised Learning and Text Classification

1 Representing Text for Classification Purposes
2 Training a Classifier

4 Evaluating a Classifier

5 Advanced Topics (Hints)

20 / 124

The Supervised Learning Approach to Classification

• An old-fashioned way to build text classifiers was via knowledge engineering,
i.e., manually building classification rules

• E.g., (Viagra or Sildenafil or Cialis) → Spam

• Disadvantages: expensive to setup and to mantain

• Superseded by the supervised learning (SL) approach
• A generic (task-independent) learning algorithm is used to train a classifier

from a set of manually classified examples
• The classifier learns, from these training examples, the characteristics a new

text should have in order to be assigned to class c

• Advantages:
• Annotating / locating training examples cheaper than writing classification

rules
• Easy update to changing conditions (e.g., addition of new classes, deletion of

existing classes, shifted meaning of existing classes, etc.)

21 / 124

The Supervised Learning Approach to Classification

22 / 124

The Supervised Learning Approach to Classification

23 / 124

Representing Text for Classification Purposes

• In order to be input to a learning algorithm (or a classifier), all training (or
unlabeled) documents are converted into vectors in a common vector space

• The dimensions of the vector space are called features (or terms, or
covariates), and the number K of features used is called the dimensionality of
the vector space

• In order to generate a vector-based representation for a set of documents
D = L ∪ U (with L the labelled training set and U the unlabelled set), the
following steps need to be taken

1 Feature Design and Extraction
2 (Feature Selection or Feature Synthesis)
3 Feature Weighting

24 / 124

Representing Text for Classification Purposes

25 / 124

Representing Text for Classification Purposes

26 / 124

Representing Text for Classification Purposes

27 / 124

Representing Text for Classification Purposes

28 / 124

Representing Text for Classification Purposes

• In order to be input to a learning algorithm (or a classifier), all training (or
unlabeled) documents are converted into vectors in a common vector space

• The dimensions of the vector space are called features (or terms, or
covariates), and the number K of features used is called the dimensionality of
the vector space

• In order to generate a vector-based representation for a set of documents
D = L ∪ U (with L the labelled training set and U the unlabelled set), the
following steps need to be taken

1 Feature Design and Extraction
2 (Feature Selection or Feature Synthesis)
3 Feature Weighting

29 / 124

Representing Text: 1. Feature Design and Extraction

• In classification by topic, a typical choice is to make the set of features
coincide with the set of words that occur in the training set (unigram model,
a.k.a. “bag-of-words”)

• This may be preceded by (a) stop word removal and/or (b) stemming or
lemmatization; (b) is meant to improve statistical robustness

• The dimensionality K of the vector space is the number of words (or stems, or
lemmas) that occur at least once in the training set, and can easily be O(105)

• But each document usually contains ≪ O(105) unique words! If we indicate
the absence of a word from a document by 0, this means that these vectors
are usually very “sparse”

• Vector sparsity and high dimensionality are possibly the two most important
characteristics that distinguish text classification from other instantiations of
classification (e.g., in data mining)

30 / 124

Representing Text: 1. Feature Design and Extraction

• Word n-grams (i.e., sequences of n words that frequently occur in L) may be
optionally added; this is usually limited to n = 2 (unigram+bigram model)

Word Unigrams

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

...

Word Bigrams

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

...

• The higher the value of n, the higher the semantic significance and the
dimensionality K of the resulting representation, and the lower its statistical
robustness

31 / 124

Representing Text: 1. Feature Design and Extraction

• An alternative to the process above is to make the set of features coincide
with the set of character n-grams (e.g., n ∈ {3, 4, 5}) that occur in L; useful
especially for degraded text (e.g., resulting from OCR or ASR)2

Character 5-grams

It was a dark and stormy night

It was a dark and stormy night

It was a dark and stormy night

It was a dark and stormy night

It was a dark and stormy night

It was a dark and stormy night
...

• In order to achieve statistical robustness, all of the representations discussed
so far renounce encoding word order and syntactic structure

2Paul McNamee, James Mayfield: Character N-Gram Tokenization for European Language
Text Retrieval. Information Retrieval 7(1-2):73-97 (2004)

32 / 124

Representing Text: 1. Feature Extraction

• The above is OK for classification by topic, but not necessarily when
classifying by other dimensions!

• E.g.
• in classification by author, features such average word length, average sentence

length, punctuation frequency, frequency of subjunctive clauses, etc., are used3

• In classification by sentiment, bag-of-words is not enough, and deeper
linguistic processing is necessary

• The choice of features for a classification task (feature design) is dictated by
the distinctions we want to capture, and is left to the designer.

3Patrick Juola: Authorship Attribution. Foundations and Trends in Information Retrieval
1(3): 233-334 (2006)

33 / 124

Representing Text: 1. Feature Extraction

• The above is OK for classification by topic, but not necessarily when
classifying by other dimensions!

• E.g.
• in classification by author, features such average word length, average sentence

length, punctuation frequency, frequency of subjunctive clauses, etc., are used3

• In classification by sentiment, bag-of-words is not enough, and deeper
linguistic processing is necessary

• The choice of features for a classification task (feature design) is dictated by
the distinctions we want to capture, and is left to the designer.

3Patrick Juola: Authorship Attribution. Foundations and Trends in Information Retrieval
1(3): 233-334 (2006)

33 / 124

Representing Text: 1. Feature Extraction

• The above is OK for classification by topic, but not necessarily when
classifying by other dimensions!

• E.g.
• in classification by author, features such average word length, average sentence

length, punctuation frequency, frequency of subjunctive clauses, etc., are used3

• In classification by sentiment, bag-of-words is not enough, and deeper
linguistic processing is necessary

• The choice of features for a classification task (feature design) is dictated by
the distinctions we want to capture, and is left to the designer.

3Patrick Juola: Authorship Attribution. Foundations and Trends in Information Retrieval
1(3): 233-334 (2006)

33 / 124

Representing Text: 2a. Feature selection

• Vectors of length O(105) or O(106) might result, esp. if word n-grams are
used, in both “overfitting” and high computational cost;

• Feature selection (FS) has the goal of identifying the most discriminative
features, so that the others may be discarded

• The “filter” approach to FS consists in measuring (via a function ξ) the
discriminative power ξ(tk) of each feature tk and retaining only the
top-scoring features4

• For binary classification, a typical choice for ξ is mutual information, i.e.,

MI (tk , ci) =
∑

c∈{ci ,c i}

∑
t∈{tk ,tk}

Pr(t, c) log2

Pr(t, c)

Pr(t) Pr(c)

Alternative choices are chi-square and log-odds.

4Y. Yang, J. Pedersen: A Comparative Study on Feature Selection in Text Categorization.
Proceedings of ICML 1997.

34 / 124

Representing Text: 2b. Feature Synthesis

• Matrix decomposition techniques (e.g., PCA, SVD, LSA) can be used to
synthesize new features that replace the features discussed above with ones
not suffering from ambiguity and polisemy

• These techniques are based on the principles of distributional semantics,
which states that the semantics of a word “is” the words it co-occurs with in
corpora of language use

You shall know a word by the company it keeps
(John R. Firth, 1957)

• Pros: the synthetic features in the new vectorial representation do not suffer
from polisemy or synonymy

• Cons: computationally expensive, sometimes prohibitively so

• Word embeddings: the “new wave of distributional semantics”, as from
“deep learning”5

5Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean, J. Distributed representations
of words and phrases and their compositionality. NIPS, 2013.

35 / 124

Representing Text: 3. Feature Weighting

• Feature weighting means attributing a value xik to feature tk in the vector xi
that represents document di : this value may be

• binary (representing presence/absence of tk in di); or

• numeric (representing the importance of tk for di); obtained via feature
weighting functions in the following two classes:

• unsupervised : e.g, tf ∗ idf or BM25,
• supervised : e.g., tf ∗MI , tf ∗ χ2

• The similarity between two vectors may be computed via cosine similarity

sim(x1, x2) =

∑K
i=1 xi1 · xi2

(
∑K

i=1 x
2
i1)

1
2 (
∑K

i=1 x
2
i2)

1
2

If these vectors are pre-normalized, this is equivalent to computing their dot
product

sim(x1, x2) =
K∑
i=1

xi1 · xi2

36 / 124

The Supervised Learning Approach to Classification

37 / 124

Supervised Learning for Binary Classification

• For binary classification, essentially any supervised learning algorithm can be
used for training a classifier; popular choices include

• Support vector machines (SVMs)
• Boosted decision stumps
• Logistic regression
• Näıve Bayesian methods
• Lazy learning methods (e.g., k-NN)
• ...

• The “No-free-lunch principle” (Wolpert, 1996): ≈ there is no learning
algorithm that can outperform all others in all contexts

• Implementations need to cater for
• the very high dimensionality typical of TC
• the sparse nature of the representations involved

38 / 124

An Example Supervised Learning Method: SVMs

• A constrained optimization problem: find the separating surface (e.g.,
hyperplane) that maximizes the margin (i.e., the minimum distance between
the hyperplane and the training examples)

• Margin maximization conducive to good generalization accuracy on unseen
data

• Theoretically well-founded + good empirical performance on a variety of tasks
• Publicly available implementations optimized for high-dimensional, sparse

feature spaces: e.g., SVM-Light, LibSVM, LibLinear,
39 / 124

An Example Supervised Learning Method: SVMs (cont’d)

• We consider linear separators (i.e., hyperplanes) and classifiers of type

h(x) = sign(w · x+ b)

• Hard-margin SVMs look for

argmin
w≥0

1

2
w ·w

such that yi [w · xi + b] ≥ 0
for all i ∈ {1, ..., |L|}

• There are now fast algorithms for this6

6T. Joachims, C.-N. Yu: Sparse kernel SVMs via cutting-plane training. Machine Learning,
2009.

40 / 124

An Example Supervised Learning Method: SVMs (cont’d)

• Classification problems are often not linearly separable (LS)

• Soft-margin SVMs introduce penalties for misclassified training examples;
they look for

arg min
w,ξi≥0

1

2
w ·w + C

|L|∑
i=1

ξi

such that y ′
i [w · x′i + b] ≥ (1− ξi)

for all i ∈ {1, ..., |L|}
41 / 124

An Example Supervised Learning Method: SVMs (cont’d)

• Non-LS problems can become LS once mapped to a high-dimensional space

42 / 124

An Example Supervised Learning Method: SVMs (cont’d)

• Kernels are similarity functions K (xi , xj) = ϕ(xi) · ϕ(xj), where ϕ(·) is a
mapping into a higher-dimensional space

• SVMs can indeed use kernels instead of the standard dot product; popular
kernels are

• K(xi , xj) = xi · xj (the linear kernel)
• K(xi , xj) = (γxi · xj + r)d , γ > 0 (the polynomial kernel)
• K(xi , xj) = exp(−γ||xi − xj ||2), γ > 0 (the RBF kernel)
• K(xi , xj) = tanh(γxi · xj + r) (the sigmoid kernel)

• However, the linear kernel is usually employed in text classification
applications; there are theoretical arguments supporting this7.

7T. Joachims: A Statistical Learning Model of Text Classification for Support Vector
Machines. Proceedings of SIGIR 2001.

43 / 124

Supervised Learning for Non-Binary Classification

• Some learning algorithms for binary classification are “SLMC-ready”; e.g.
• Decision trees
• Boosted decision stumps
• Logistic regression
• Naive Bayesian methods
• Lazy learning methods (e.g., k-NN)

• For other learners (notably: SVMs) to be used for SLMC classification,
combinations / cascades of the binary versions need to be used8

• For ordinal classification, algorithms customised to OC need to be used (e.g.,
SVORIM, SVOREX)9

8K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs,
Journal of Machine Learning Research, 2001.

9Chu, W., Keerthi, S.: Support vector ordinal regression. Neural Computation, 2007.
44 / 124

Parameter Optimization in Supervised Learning

• The trained classifiers often depend on one or more parameters: e.g.,
• The C parameter in soft-margin SVMs
• The γ, r , d parameters of non-linear kernels
• ...

• These parameters need to be optimized, e.g., via k-fold cross-validation on
the training set

45 / 124

Text Classification

1 Text Classification

2 Applications of Text Classification

3 Supervised Learning and Text Classification

1 Representing Text for Classification Purposes
2 Training a Classifier

4 Evaluating a Classifier

5 Advanced Topics (Hints)

46 / 124

Evaluating a Classifier

• Two important aspects in the evaluation of a classifier are efficiency and
effectiveness

• Efficiency refers to the consumption of computational resources, and has two
aspects

• Training efficiency (also includes time devoted to performing feature selection
and parameter optimization)

• Classification efficiency; usually considered more important than training
efficiency, since classifier training is carried out (a) offline and (b) only once

• For evaluating a text classifier it is good practice to consider both training
costs and classification costs

47 / 124

Effectiveness

• Effectiveness (a.k.a. accuracy) refers to how frequently classification decisions
taken by a classifier are “correct”

• Usually considered more important than efficiency, since accuracy issues “are
there to stay”

• Effectiveness tests are carried out on one or more datasets meant to simulate
operational conditions of use

• The main pillar of effectiveness testing is the evaluation measure we use

48 / 124

Evaluation Measures for Classification

• Each type of classification (binary/SLMC/MLMC/ordinal) and mode of
classification (hard/soft) requires its own measure

• For binary (hard) classification, given the contingency table Ω

true
Yes No

pr
ed Yes TP FP

No FN TN

the standard measure is F1, the harmonic mean of precision (π =
TP

TP+ FP
)

and recall (ρ =
TP

TP+ FN
), i.e.,

F1 =


πρ

π + ρ
=

2TP

2TP+ FP+ FN
if TP+ FP+ FN > 0

1 if TP = FP = FN = 0

• F1 is robust to the presence of imbalance in the test set
49 / 124

Evaluation Measures for Classification (cont’d)

• For multi-label multi-class classification, F1 must be averaged across the
classes, according to

1 micro-averaging: compute F1 from the “collective” contingency table obtained
by summing cells

true
Yes No

pr
ed
ic
te
d Yes

∑
ci∈C

TPi

∑
ci∈C

FPi

No
∑
ci∈C

FNi

∑
ci∈C

TNi

2 macro-averaging: compute F1(ci) for all ci ∈ C and then average

• Micro usually gives higher scores than macro ...

50 / 124

Evaluation Measures for Classification (cont’d)

• For single-label multi-class classification, the most widely used measure is
(“vanilla”) accuracy

A =

∑
ci∈C Ωii

|U|
where Ωij is the number of documents in ci which are predicted to be in cj

true
c1 ... c|C|

pr
ed

c1 Ω11 ... Ω1|C|
...
c|C| Ω|C|1 ... Ω|C||C|

• Macro-averaged F1 is a possible alternative

51 / 124

Evaluation Measures for Classification (cont’d)

• For ordinal classification, the measure must acknowledge that different errors
may have different weight; the most widely used one is macroaveraged mean
absolute error, i.e.,

MAEM(h,U) =
1

n

n∑
i=1

1

|Ui |
∑
xj∈Ui

|h(xj)− yi)|

• For soft classification, measures from the tradition of ad hoc retrieval are
used. E.g., for soft single-label multi-class classification, mean reciprocal
ranking can be used, i.e.,

MRR(h,U) =
1

|U|
∑
xj∈U

1

rh(yi)

52 / 124

Some Datasets for Evaluating Text Classification

T
ot
al

ex
am

p
le
s

T
ra
in
in
g
ex
am

p
le
s

T
es
t
ex
am

p
le
s

C
la
ss
es

H
ie
ra
rc
h
ic
al

L
an
gu

ag
e

T
yp

e

Reuters-21578 ≈ 13,000 ≈ 9,600 ≈ 3,200 115 No EN MLMC
RCV1-v2 ≈ 800,000 ≈ 20,000 ≈ 780,000 99 Yes EN MLMC

20Newsgroups ≈ 20,000 — — 20 Yes EN MLMC
OHSUMED-S ≈ 16,000 ≈ 12,500 ≈ 3,500 97 Yes EN MLMC

TripAdvisor-15763 ≈ 15,700 ≈ 10,500 ≈ 5,200 5 No EN Ordinal
Amazon-83713 ≈ 83,700 ≈ 20,000 ≈ 63,700 5 No EN Ordinal

53 / 124

Want to Experiment with Text Classification?

• Several publicly available environments where to play with text preprocessing
routines, feature selection functions, feature weighting functions, learning
algorithms, etc. E.g.,

• scikit-learn (http://scikit-learn.org/): Python-based, features
various classification, regression and clustering algorithms including SVMs,
random forests, gradient boosting, k-means (...), and is designed to
interoperate with the Python numerical and scientific libraries NumPy and
SciPy.

• Weka (https://www.cs.waikato.ac.nz/ml/weka/): Java-based, features
various algorithms for data analysis and predictive modeling.

54 / 124

http://scikit-learn.org/
https://www.cs.waikato.ac.nz/ml/weka/

Text Classification

1 Text Classification

2 Applications of Text Classification

3 Supervised Learning and Text Classification

1 Representing Text for Classification Purposes
2 Training a Classifier

4 Evaluating a Classifier

5 Advanced Topics (Hints)

55 / 124

Advanced Topics (hints)

• Hierarchical classification
• Classification when the classification scheme has a hierarchical nature

• Hypertext classification (an application of “Relational Learning”)
• Classification when the items are hypertextual (e.g., Web pages)

• Cost-sensitive classification
• Classification when false positives and false negatives are not equally bad

mistakes

• Semi-supervised classification
• When the classifier is trained using a combination of labelled and unlabelled

documents

• Transductive classification
• When at training time we have all the unlabelled texts that need classifying

56 / 124

Advanced Topics (hint)

• Cross-lingual text classification
• Learning to classify documents in a language Lt from training data expressed

in a language Ls

• Semi-automated text classification
• Optimizing the work of human assessors that need to review the results of

automated classification

• Text quantification
• Learning to estimate the distribution of the classes within the unlabelled data

• Active learning for classification
• When the items to label for training purposes are suggested by the system

57 / 124

Further Reading

• General:
• C. Aggarwal and C. Zhai: A Survey of Text Classification Algorithms. In C.

Aggarwal and C. Zhai (eds.), Mining Text Data, pp. 163–222, Springer, 2012.
• C. Aggarwal: Chapters 5–7 of Machine Learning for Text, Springer, 2018.
• T. Joachims: Learning to Classify Text using Support Vector Machines.

Kluwer, 2002.

• Supervised learning:
• K. Murphy: Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
• T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning,

2nd Edition. Springer, 2009.

• Evaluating the effectiveness of text classifiers:
• N. Japkowicz and M. Shah: Evaluating Learning Algorithms: A Classification

Perspective. Cambridge University Press, 2011.

58 / 124

Part II :
Authorship Analysis

59 / 124

Spotting fake texts

• Can we spot a fake text?

• Different notions of what a fake
text is:

1 A text that reports false facts,
sometimes fabricated ones,
usually presented as being
factually accurate (as in “fake
news”)

2 A text whose author (a forger)
pretends to be a different author

• The latter is the meaning we will
be looking at

60 / 124

Spotting fake texts

• On Jan 1, 2018 Italian Prime
Minister M. Salvini publicized this
anonymous letter that he allegedly
received

• The letter contained several
threats, and looked like it was
written (in uncertain Italian) by an
Albanian

61 / 124

Spotting fake texts

• Three days later, Albanian
sociolinguist E. Shkreli
(UofBologna), argued that the
message was a forgery, since

• while it showed poor knowledge
of Italian, it did not contain
typical mistakes (with articles,
or double consonants, or ...)
that L1 Albanian speakers make
when writing in L2 Italian

• it contained mistakes (“ai”
instead of “hai”) that Italians
with low proficiency in written
Italian typically make;

• it contained idioms (“puntati su
di te”) that are “very Italian”,
and unnatural for Albanians.

62 / 124

Spotting fake texts

• The above is an attempt at Native
Language Identification, the task
of identifying the L1 of the author
of a text written in a language L2

• NLI is based on the fact that
learners of an L2 display a
tendency to transfer forms and
meanings of their L1 linguistic
background to L2 (language
transfer)

• Q: Can we automate NLI?

• A: Yes.

63 / 124

(Computational) Authorship Analysis

• NLI is one example of Authorship Analysis, the task of predicting / guessing
/ inferring the characteristics of the author of a text of unknown or disputed
authorship

• AA: Traditionally carried out by linguists and philologists, via

1 a linguistic analysis of the characteristics present in the disputed text (e.g.,
word “satrap” + poor quality of Latin in the Donation of Constantine)

2 an extralinguistic analysis of concepts expressed and facts described in the
text, and the likelihood that a certain author could express and describe them

• Computational Authorship Analysis is the attempt to perform authorship
analysis by computerized means, and usually rests only on linguistic (and no
extralinguistic) analysis

64 / 124

(Computational) Authorship Analysis

• Various sub-tasks of (Computational) Authorship Analysis; e.g.,
• tasks dealing with inferring the identity of the author; e.g.,

• Authorship Attribution (AA), i.e., predicting who, among a set of k candidate
authors, is the most likely author of the text;

• Authorship Verification (AV), i.e., predicting if a certain candidate author is or
is not the author of the text;

• Same-Authorship Verification (SAV), i.e., predicting whether two candidate
texts d ′ and d ′′ are by the same author or not;

• tasks dealing with inferring other characteristics of the author; e.g.,
• Native Language Identification (NLI), i.e., predicting the native language (L1)

of the author of the text;
• Gender Identification (GI), i.e., predicting whether the text was written by a

woman or a man;
• Bot Detection (BD), i.e., predicting whether the text (usually: a social media

post) was written by a human or a “bot”.

• Here we will mostly deal with authorship verification.

65 / 124

(Computational) Authorship Analysis

• Major applications of authorship
analysis include

• Cybersecurity, i.e., the
prevention of crimes that could
be committed with the help of
digital means

• Computational forensics, i.e.,
the digital analysis of evidence
from crimes that have already
been committed.

• forensic linguistics can do for
crimes involving language,
such as threats, blackmail,
and extortion, what DNA has
done for violent crimes.

• Philology: discussed below

66 / 124

Computational Authorship Analysis and Philology

• Applications of computational
authorship analysis to texts of
literary or historical value include

• Mosteller & Wallace 1964 :
Who among the “Publius”
collective wrote the Federalist
papers?

• Italia and Canettieri 2013 : is
“Montale’s Posthumous Diary”
authentic?

• Tuccinardi 2017: is “Pliny the
Younger’s letter to Trajan on
the Christians” authentic?

• (Various authors) 2017 : Who is
Elena Ferrante?

• Computational authorship analysis
is not meant to replace the work
of philologists, but to provide
them with new tools

67 / 124

Authorship Analysis and Stylometry

• We tackle authorship analysis as a
text classification task

• What differentiates classification
by author from classification by
topic is the choice of features
(each dimension of classification is
characterized by its choice of
features)

• As usual, if the features have been
chosen well, data items belonging
to the same class (= author) will
be close to each other in the
vector space

Wincenty Lutos lawski (1863–1954)

68 / 124

Authorship Analysis and Stylometry

• As usual, the choice of the “right”
features is thus an art that the
designer of ML-based classifiers
must master

• In its choice of features, the
designers of authorship analysis
usually look at stylometry, the
discipline that studies linguistic
style via quantitative means

• Instance of the “evidential
paradigm” postulated by Carlo
Ginzburg in his essay “Clues”

Wincenty Lutos lawski (1863–1954)

69 / 124

Authorship Analysis and Stylometry

• Typical stylometry-inspired
features used in authorship
analysis are

• punctuation symbols
• word lengths
• sentence lengths
• function words
• POS tags
• token/word ratio
• ...

• The assumption is that the
frequency of use of these features
tends to fall outside the conscious
control of the author, and is thus

• author-invariant (a “digital
fingerprint”)

• hard to copy for a would-be
forger

Wincenty Lutos lawski (1863–1954)

70 / 124

A case study: Dante’s “Epistle to Cangrande”

• A case study:
Were the two parts of Dante’s
“Epistle to Cangrande” actu-
ally written by Dante, or were
they written by a forger?

• A long-standing problem in
philology

• We tackle it via (computational)
authorship verification, the task of
predicting if a candidate author a∗

is or is not the author of a text d
of unknown paternity

71 / 124

A case study: Dante’s “Epistle to Cangrande”

• Solved as a binary text
classification problem, using
“stylometric” features (i.e.,
stylistic traits)

• “One vs. the rest” classifier
trained on texts by author a∗

(positive examples) and on texts
by other authors A = {a1, ..., an}
(negative examples)

• In order to do so we assemble two
corpora of Latin texts (one for
each part) written by Dante’s
coeval authors

72 / 124

Authorship Verification

• Our AV system hypothesized that
both parts of the Epistle were
written by a forger

• This hypothesis is corroborated by
high accuracy results that the
same system has obtained on texts
of known authorship

LOO Ep13(1) LOO Ep13(2)
TP 11 1
FP 0 2
FN 1 1
TN 282 26
Total 294 30

73 / 124

References

• Silvia Corbara, Alejandro Moreo, Fabrizio Sebastiani, and Mirko Tavoni. L’Epistola a Cangrande al
vaglio della Computational Authorship Verification: Risultati preliminari (con una postilla sulla
cosiddetta “XIV Epistola di Dante Alighieri”). In Alberto Casadei (ed.), Atti del Seminario “Nuove
Inchieste sull’Epistola a Cangrande”, Pisa University Press, Pisa, IT, 153-192, 2020.
http://nmis.isti.cnr.it/sebastiani/Publications/Cangrande2020.pdf

• Carlo Ginzburg. 1989. Clues: Roots of an Evidential Paradigm. In Clues, Myths, and the Historical
Method: Works of Carlo Ginzburg. The Johns Hopkins University Press, Baltimore, US, 96–214.

• Patrick Juola. 2006. Authorship Attribution. Foundations and Trends in Information Retrieval 1, 3
(2006), 233–334. DOI: http://dx.doi.org/10.1561/1500000005

• Moshe Koppel, Jonathan Schler, and Shlomo Argamon. 2009. Computational methods in authorship
attribution. Journal of the American Society for Information Science and Technology 60, 1 (2009),
9–26. DOI: http://dx.doi.org/10.1002/asi.20961

• Efstathios Stamatatos. 2009. A survey of modern authorship attribution methods. Journal of the
American Society for Information Science and Technology 60, 3 (2009), 538–556.
DOI:http://dx.doi.org/10.1002/asi.21001

• Efstathios Stamatatos. 2016. Authorship Verification: A Review of Recent Advances. Research in
Computing Science 123 (2016), 9–25.

74 / 124

http://nmis.isti.cnr.it/sebastiani/Publications/Cangrande2020.pdf
http://dx.doi.org/10.1561/1500000005
http://dx.doi.org/10.1002/asi.20961

Part III :
Cross-Lingual Text Classification

75 / 124

Multilingual Text Classification

TRAIN

TEST

TRAIN

TEST

TRAIN

TEST

• Each document d written in one of a finite set L = {λ1, , ..., λm}
• Codeframe C = {c1, ..., cn} is the same for all languages

• Scenario common in many multinational organizations / companies and in
many multilingual countries

• Three “variants” of this task

76 / 124

1. (Multiple) Mono-lingual Text Classification

TRAIN

TEST

TRAIN

TEST

TRAIN

TEST

(source)

(target)

• MLC solved as m independent monolingual classification tasks

77 / 124

2. Poly-lingual Text Classification

TRAIN

TEST

TRAIN

TEST

TRAIN

TEST

(source)

(target)

• Attempts to exploit synergies among languages

• Some training examples exist for all languages in L
• Often called the “few-shot” scenario

• ⇒ Improve over monolingual classifiers

78 / 124

3. Cross-lingual Text Classification

TRAIN

TEST

TRAIN

TEST

TRAIN

TEST

• Attempts to exploit synergies among languages

• Training examples exist only for the source languages Ls ⊂ L and not for
some of the target languages Lt ⊂ L

• Often called the “zero-shot” scenario

• ⇒ Generate classifiers for languages for which you otherwise could not

79 / 124

Our problem setting

TRAIN

TEST

TRAIN

TEST

TRAIN

TEST

(source)

(target)

• We will concentrate on polylingual multiclass classification (i.e., n ≥ 2)
• single-label PLC (1-of-n), which subsumes the binary case
• multi-label PLC (any-of-n)

80 / 124

Transfer Learning

• PLC and CLC are instances of (Heterogeneous) Transfer Learning (TL)

• Basic idea of TL: reuse info about a problem in a source domain for solving
the same problem in a different target domain

• CLC / PLC : problem = classification in C
info = training examples
domain = language

• Useful to address the “training data bottleneck”, esp. for under-resourced
languages

81 / 124

Transfer Learning

• PLC represents a form of massive
TL : all training examples
contribute to the classification of
all unlabelled examples,
irrespectively of language

• How can we achieve that?

• One direction is that of trying to
“eliminate the differences between
languages”

• Funnelling: a classifier ensemble
method for heterogeneous TL

82 / 124

Funnelling: PLC made easy

meta classifier

base classifiers

calibrated
posterior

probabilities

meta classifier

decision
scores

base classifiers

• Two-level classification
architecture

1 Set of language-dependent base
classifiers

2 Language-independent
metaclassifier

• For the metaclassifier, document
d represented as vector of n
classification scores

• Metaclassifier outputs a vector of
n classification scores

A. Esuli, A. Moreo, F. Sebastiani. Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning and its Application to Cross-Lingual

Text Classification. ACM TOIS, 2019.

83 / 124

Funnelling: PLC made easy

meta classifier

base classifiers

calibrated
posterior

probabilities

meta classifier

decision
scores

base classifiers

• Easy!

• Works for multi-label / single-label
/ ordinal

• Learner-independent (even allows
̸= learners for ̸= languages)

• Independent from representation
model used in base classifiers
(even allows ̸= models for ̸=
languages)

• No requirement that training set
should be parallel or comparable

• No requirement for ML
dictionaries or MT services

84 / 124

Funnelling: PLC made easy

x

y

z

u

v

w

ç

a

b

ñ

o

p

喂

名

猫

C1

C2

C3

• Funnelling maps different
non-overlapping feature spaces
into a shared feature space

• Key to this is the fact that
posterior probabilities are aligned
across languages

85 / 124

Probability calibration

• Problem: metaclassifier receives,
as input, vectors coming from
different, incomparable sources

• Solution: make them comparable,
by converting classification scores
S(c , d) into well calibrated
posterior probabilities Pr(c |d)

• Calibration: “90% of items whose
Pr(c |d) is 0.9 should belong to c”

• To be performed independently for
each generated classifier

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-0.2

0.2

0.4

0.6

0.8

1.0
σ=0.20

σ=0.42

σ=1.00

σ=2.00

σ=3.00

86 / 124

Probability calibration

• Several calibration methods
available off-the-shelf (e.g., “Platt
calibration”)

• Needed for some learners and not
for others; e.g.,

Outputs Outputs
Posterior WC Posterior

Probs Probs
SVMs No No

AdaBoost No No
Naive Bayes Yes No
Logistic Reg Yes Yes -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-0.2

0.2

0.4

0.6

0.8

1.0
σ=0.20

σ=0.42

σ=1.00

σ=2.00

σ=3.00

87 / 124

Training a funnelling system

1 Train base classifiers using monolingual training sets

2 Classify training examples
• via trained classifiers (Fun(TAT))
• via k-fold cross-validation (Fun(kFCV))

3 Map classification scores into well-calibrated posterior probabilities

4 Use posterior probabilities of training examples for training the metaclassifier

• Fun(TAT): base classifiers generate higher-quality representations for training
data than for test data

• Fun(kFCV): base classifiers generate lower-quality representations for training
data than for test data

• → Choose via experimentation

88 / 124

How well does funnelling work?

• Datasets:
• RCV1/RCV2: comparable corpus, 9 languages, 10 samples × ((1000 training

+ 1000 test) per language), 73 classes
• JRC-Acquis: parallel corpus, 11 languages, 10 samples × ((1155 training +

4242 test) per language), 300 classes

• Learners:
• SVMs w/ linear kernel (base classifiers)
• SVMs w/ RBF kernel (metaclassifier)

• Baselines:
• Näıve (i.e., multiple monolingual classifiers)
• Cross-Lingual Explicit Semantic Analysis
• Distributional Correspondence Indexing
• Lightweight Random Indexing

• Measures (both in micro- and macro-averaged versions):
• F1

• K (≈ “balanced accuracy”)
89 / 124

Some results

• More consistent improvements over näıve baseline

90 / 124

Multi-label PLC results

N
ä
ıv
e

L
R
I

C
L
E
S
A

D
C
I

F
u
n
(k

f
c
v
)

F
u
n
(t
a
t
)

Fµ
1

RCV1/RCV2 .776 .771 .714 .770 .801† .802
JRC-Acquis .559 .594 .557 .510 .581 .587

FM
1

RCV1/RCV2 .467 .490 .471 .485 .512 .534
JRC-Acquis .340 .411 .379 .317 .356 .399

Kµ RCV1/RCV2 .690 .696 .659 .696 .731 .760
JRC-Acquis .429 .476 .453 .382 .457 .490

KM RCV1/RCV2 .417 .440 .434 .456 .482 .506
JRC-Acquis .288 .348 .330 .274 .328 .365

91 / 124

Single-label PLC results

N
ä
ıv
e

L
R
I

C
L
E
S
A

D
C
I

F
u
n
(k

f
c
v
)

F
u
n
(t
a
t
)

Fµ
1

RCV1/RCV2 .759 .766 .706 .736 .792 .781
JRC-Acquis .202 .353 .331 .262 .318 .340†

FM
1

RCV1/RCV2 .538 .558 .543 .543 .584 .596
JRC-Acquis .362 .407 .400 .374 .382 .389

Kµ RCV1/RCV2 .649 .670 .636 .646 .715 .757
JRC-Acquis .115 .222 .215 .163 .205 .253

KM RCV1/RCV2 .503 .522 .521 .527 .559 .594
JRC-Acquis .358 .400 .396 .380 .389 .407

92 / 124

What does funnelling learn, exactly?

1 The metaclassifier learns to
combine scores from different
classifiers

2 The metaclassifier learns to exploit
the stochastic dependencies
between classes (the multiclass
factor)

3 The metaclassifier learns to
classify documents in any
language from training documents
of any language (the
multilanguage factor)

• Which factor contributes most?

93 / 124

Which languages benefit / contribute most?

94 / 124

How does this contribution evolve?

95 / 124

Part IV :
Sentiment Analysis

96 / 124

Sentiment Analysis and Opinion Mining

1 The Task

2 Applications of SA and OM

3 The Main Subtasks of SA / OM

4 Advanced Topics

97 / 124

Sentiment Analysis and Opinion Mining

1 The Task

2 Applications of SA and OM

3 The Main Subtasks of SA / OM

4 Advanced Topics

98 / 124

The Task

• Sentiment Analysis and Opinion
Mining: a set of tasks concerned
with the analysing of texts
according to the sentiments /
opinions / emotions / judgments
(private states, or subjective
states) expressed in them

• Originally, term “SA” had a more
linguistic slant, while “OM” had a
more applicative one

• “SA” and “OM” largely used as
synonyms nowadays

99 / 124

Opinion Mining and the Web 2.0 (cont.)

• The 2000’s: Web 2.0 is born

• Non-professional users also
become authors of content, and
this content is often opinion-laden.

• With the growth of UGC,
companies understand the value of
these data (e.g., product reviews),
and generate the demand for
technologies capable of mining
“sentiment” from them.

• SA becomes the “Holy Grail” of
market research, opinion research,
and online reputation
management.

100 / 124

Sentiment Analysis and Opinion Mining

1 The Task

2 Applications of SA and OM

3 The Main Subtasks of SA / OM

4 Advanced Topics

101 / 124

Opinion Research / Market Research via Surveys

• Questionnaires may contain
“open” questions

• In many such cases the opinion
dimension needs to be analysed,
esp. in

• social sciences surveys
• political surveys
• customer satisfaction surveys

• Many such applications are
instances of mixed topic /
sentiment classification

102 / 124

Computational Social Science

103 / 124

Market Research via Social Media Analysis

104 / 124

Political Science: Predicting Election Results

105 / 124

Online Reputation Detection / Management

106 / 124

Computational Advertising

107 / 124

Sentiment Analysis and Opinion Mining

1 The Task

2 Applications of SA and OM

3 The Main Subtasks of SA / OM

4 Advanced Topics

108 / 124

How Difficult is Sentiment Analysis?

• Sentiment analysis is inherently difficult, because in order to express opinions
/ emotions / etc. we often use a wide variety of sophisticated expressive
means (e.g., metaphor, irony, sarcasm, allegation, understatement, etc.)

• “At that time, Clint Eastwood had only two facial expressions: with the hat
and without it.”

(from an interview with Sergio Leone)

• “She runs the gamut of emotions from A to B”
(on Katharine Hepburn in “The Lake”, 1934)

• “If you are reading this because it is your darling fragrance, please wear it at
home exclusively, and tape the windows shut.”

(from a 2008 review of parfum “Amarige”, Givenchy)

• Sentiment analysis could be characterised as an “NLP-complete” problem

109 / 124

Main Subtasks within SA / OM

• Sentiment Classification: classify a piece of text based on whether it
expresses a Positive / Neutral / Negative sentiment

• Sentiment Lexicon Generation: determine whether a word / multiword
conveys a Positive, Neutral, or Negative sentiment

• Sentiment Quantification: given a set of texts, estimate the prevalence of
different Positive, Neutral, Negative sentiments

• Opinion Extraction (a.k.a. “Fine-Grained SA”): given an opinion-laden
sentence, identify the holder of the opinion, its object, its polarity, the
strength of this polarity, the type of opinion

• Aspect-Based Sentiment Extraction: given an opinion-laden text about an
object, estimate the sentiments conveyed by the text concerning different
aspects of the object

110 / 124

Sentiment Classification

• The “queen” of OM tasks

• May be topic-biased or not

1 Classify items by sentiment; vs.
2 Find items that express an opinion about the topic, and classify them by their

sentiment towards the topic

• Binary, ternary, or n-ary (ordinal) versions
• Ternary also involves Neutral or OK-ish (sometimes confusing the two ...)
• Ordinal typically uses 1-Star, 2-Stars, 3-Stars, 4-Stars, 5-Stars as

classes

• At the sentence, paragraph, or document level
• Classification at the more granular levels used to aid classification at the less

granular ones

• May be supervised or unsupervised

111 / 124

Sentiment Classification (cont’d)

• Unsupervised Sentiment Classification (USC) relies on a sentiment lexicon

• The first USC approaches just leveraged the number of occurrences of
Positive words and Negative words in the text

• Approach later refined in various ways; e.g.,
• If topic-biased, measure the distance between the sentiment-laden word and a

word denoting the topic
• Bring to bear valence shifters (e.g., particles indicating negated contexts such

as not, hardly, etc.)
• Bring to bear intensifiers (e.g., very, extremely) and diminishers (e.g.,

fairly)
• Bring in syntactic analysis (and other levels of linguistic processing) to

determine if sentiment really applies to the topic
• Use WSD in order to better exploit sense-level sentiment lexicons

112 / 124

Sentiment Classification (cont’d)

• Supervised Sentiment Classification (SSC) is just (single-label) text
classification with sentiment-related polarities as the classes

• Key fact: bag-of-words (or of-stems, or of-ngrams) does not lead anywhere ...
• E.g., “A horrible hotel in a beautiful town!” vs.

“A beautiful hotel in a horrible town!”

• The same type of linguistic processing used for USC is also needed for SSC,
with the goal of generating features for vectorial representations
→ “A ⟨Negative⟩ hotel in a ⟨Positive⟩ town!”

• SSC tends to work better than USC, but requires training data; this has
spawned research into

• Semi-supervised sentiment classification
• Transfer learning for sentiment classification

113 / 124

Sentiment Lexicon Generation

• The use of a sentiment lexicon is central to both USC and SSC (and to all
other OM-related tasks)

• Early sentiment lexicons were small, at the word level, and manually
annotated

• E.g., the General Inquirer

• SLs generated from corpora later become dominant;
• Some of them are at the word sense level (e.g., SentiWordNet)
• Some of them are medium-dependent (e.g., SLs for Twitter)
• Some of them are domain-dependent (e.g., SLs for the financial domain)
• Many of them are for languages other than English (e.g., SentiWordNet’s in

other languages)

114 / 124

Sentiment Lexicon Generation (cont’d)

• Several intuitions can be used to generate / extend a SL automatically; e.g.,
• Conjunctions tend to indicate similar polarity (“cozy and comfortable”) or

opposite polarity (“small but cozy”) (Hatzivassiloglou and McKeown, 1997)
• Adjectives highly correlated to adjectives with known polarity tend to have the

same polarity (Turney and Littman, 2003)
• Synonyms (indicated as such in standard thesauri) tend to have the same

polarity, while antonyms tend to have opposite polarity (Kim and Hovy, 2004)
• Sentiment classification of words may be accomplished by classifying their

definitions (Esuli and Sebastiani, 2005)
• Words used in dictionary definitions tend to have the same polarity as the

word being defined (Esuli and Sebastiani, 2007)

• The main problem related to SLs is that the polarity of words / word senses
is often context-dependent (e.g., warm blanket vs. warm beer; low
interest rates vs. low ROI)

115 / 124

Opinion Extraction

• Opinion Extraction (a.k.a. “Fine-Grained SA”): given an opinion-laden
sentence, identify the holder of the opinion, its object, its polarity, the
strength of this polarity, the type of opinion

• An instance of information extraction, usually carried out via sequence learning
(e.g., Conditional Random Fields, HM-SVMs)

• More difficult than standard IE; certain concepts may be instantiated only
implicitly

116 / 124

Aspect-Based Sentiment Extraction

• Aspect-Based Sentiment Extraction: given an opinion-laden text about an
object, estimate the sentiments conveyed by the text concerning different
aspects of the object

• Largely driven by need of mining / summarizing product reviews

• Heavily based on extracting NPs (e.g., wide viewing angle) that are highly
correlated with the product category (e.g., Tablet).

• Aspects (e.g., viewing angle) and sentiments (e.g., wide) can be robustly
identified via mutual reinforcement

117 / 124

Sentiment Quantification

• In many applications of sentiment classification (e.g., market research, social
sciences, political sciences), estimating the relative proportions of Positive
/ Neutral / Negative documents is the real goal; this is called sentiment
quantification10

• E.g., tweets, product reviews

10A. Esuli and F. Sebastiani. Sentiment Quantification. IEEE Intelligent Systems, 2010.
118 / 124

Sentiment Analysis and Opinion Mining

1 The Task

2 Applications of SA and OM

3 The Main Subtasks of SA / OM

4 Advanced Topics

119 / 124

Advanced Topics in Sentiment Analysis

• Automatic generation of context-sensitive lexicons

• Lexemes as complex objects in sentiment lexicons

• Making sense of sarcasm / irony

• Detecting emotion / sentiment in audio / video using non-verbal features

• Cross-domain / cross-lingual / cross-cultural sentiment analysis

120 / 124

Further Reading

• General:
• B. Pang, L. Lee: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information

Retrieval, 2007.

• B. Liu: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 2012.

• R. Feldman: Techniques and applications for sentiment analysis. Communications of the ACM,

2013.

• C. Aggarwal: Chapter 13 of Machine Learning for Text, Springer, 2018.

• Sentiment analysis in social media
• S. Kiritchenko, X. Zhu, S. Mohammad: Sentiment Analysis of Short Informal Texts. Journal of

Artificial Intelligence Research 50, 2014.

• Mart́ınez-Càmara, E., Mart́ın-Valdivia, M., Urenã López, L., and Montejo Ráez, A. Sentiment

analysis in Twitter. Natural Language Engineering 20(1), 2014.

121 / 124

Questions?

122 / 124

Thank you!

For any question, Skype me at fabseb60

123 / 124

