

Representation of Information within a computer (digital information)

- The Control Unit, the RAM, the CPU and all the physical components in a computer act on electrical signals and on devices that (basically) can be in only one of two possible states
- The two states are conventionally indicated as "zero" and "one" (0 and 1), and usually correspond to two voltage levels
- The consequence is that all the data within a computer (or in order to be processed by a computer) has to be represented with 0s and 1s, i.e. in "binary notation"

Numbers

- Text (characters and ideograms)
- Documents
- Images
- Video
- Audio

Positional notation in base 10

Ten different symbols are needed for the digits (0,1,2,3,4,5,6,7,8,9)

The "weight" of each digit is a power of 10 (the base) and depends on its position in the number

$$10^{0}=1$$

$$10^{1}=10$$

$$3$$

$$4$$

$$7$$

$$10^{2}=100$$

$$3x10^{2} + 4x10^{1} + 7x10^{0} = 347$$

$$10^{4}=10000$$

Positional notation in base 2

Two different symbols are needed for the digits (0,1)

The "weight" of each digit is a power of 2 (the base) and depends on its position in the number

2 ⁰ =1									
2 ¹ =2			[]		[]				
2 ² =4	1		0		1		1		
2 ³ =8	103		002		101	_	10		
2 ⁴ =16		+	UX Z ²	+	TX7-	+	TX7。		
2 ⁵ =32	1x8	+	$\mathbf{0x4}$	+	1x2	+	1x1		
2 ⁶ =64	8	+	0	+	2	+	1	=	11
2 ⁷ =128									
2 ⁸ =256									

Numbers

Text (characters and ideograms)

- Documents
- Images
- Video
- Audio

The ASCII characters

0123456789:;<=> @ABCDEFGHIJKLMN0 PQRSTUVWXYZ[\]^ abcdefghijklmno pqrstuvwxyz{|]

The 95 printable ASCII characters, numbered from 32 to 126 (decimal) 33 control

characters

ASCII table (7 bits)

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	**	66	42	в	98	62	b
3	03	End of text	35	23	#	67	43	с	99	63	с
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	Е	101	65	e
6	06	Acknowledge	38	26	æ	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	Ċ
11	OB	Vertical tab	43	2 B	+	75	4B	к	107	6B	k
12	oc	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	м	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	Р	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	s	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans, block	55	37	7	87	57	ឃ	119	77	ω
24	18	Cancel	56	38	8	88	58	x	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗA	:	90	5A	Z	122	7A	z
27	1B	Escape	59	ЗВ	;	91	5B	C	123	7B	{
28	1C	File separator	60	зC	<	92	5C	١	124	7C	I
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1 F	Unit separator	63	ЗF	2	95	5F		127	7 F	

Vittore Casarosa – Biblioteche Digitali

- ASCII 7 bits (late fifties)
 - American Standard Code for Information Interchange
 - 7 bits for 128 characters (Latin alphabet, numbers, punctuation, control characters)
- EBCDIC (early sixties)
 - Extended Binary Code Decimal Interchange Code
 - 8 bits; defined by IBM in early sixties, still used and supported on many computers
- ASCII 8 bits (ISO 8859-xx) extends original ASCII to 8 bits to include accented letters and non Latin alphabets (e.g. Greek, Russian)
- UNICODE or ISO-10646 (1993)
 - Merged efforts of the Unicode Consortium and ISO
 - UNIversal CODE still evolving
 - It incorporates all(?) the pre-existing representation standards
 - Basic rule: round trip compatibility
 - Side effect is multiple representations for the same character

Unicode encoding

- UTF-32 (fixed length, four bytes)
 - UTF stands for "UCS Transformation Format" (UCS stands for "Unicode Character Set")
 - UTF-32BE and UTF-32LE have a "byte order mark" to indicate "endianness"
- UTF-16 (variable length, two bytes or four bytes)
 - All characters in the BMP represented by two bytes
 - The 21 bits of the characters outside of the BMP are divided in two parts of 11 and 10 bits; to each part is added an offset to bring it in the "surrogate zone" of the BMP (low surrogate at D800 and high surrogate at DC800)
 - in other words, they are represented as two characters in the BMP
 - UTF-16BE and UTF-16LE to indicate "endianness"
- UTF-8 (variable length, most often one byte)
 - Characters in the 7-bit ASCII represented by one byte
 - Variable length encoding (2, 3 or 4 bytes) for all other characters

Numbers

- Text (characters and ideograms)
- Documents
- Images

- Video
- Audio

Welcome to image representation and compression

- Vector formats (geometric description)
 - Postscript
 - PDF
 - SVG (Scalable Vector Graphics)
 - SWF (ShockWave Flash)
 - from FutureWave Software to Macromedia to Adobe
 - vector-based images, plus audio, video and interactivity

Representation of images

- can be played by Adobe Flash Player (browser plug-in or stand-alone)
- Raster formats (array of "picture elements", called "pixels")

Picture elements (pixels)

A pixel must be small enough so that its color can be considered uniform for the whole pixel. Inside the computer, a pixel is represented with a number representing its color.

Vittore Casarosa – Biblioteche Digitali

Raster format

- In raster format an image (picture) is represented by a matrix of "pixels"
- Colors are represented by three numbers, one for each "color component"
- The quality of a picture is determined by:
 - The number of rows and columns in the matrix
 - Very often it is expressed as "dots per inch" (dpi)
 - 200-4800 dpi (most common ranges)
 - The number of bits representing one pixel (called depth)
 - 1 bit for black and white
 - 8-16 bits for gray scale (most common ranges)
 - 12-48 bits for color images (most common ranges)
- Big file sizes for (uncompressed color) pictures
 - For example, one color page scanned at 600 dpi is about 100 MB

RGB and CMY color components

Additive color mixing

Subtractive color mixing

- Big file sizes for (uncompressed color) pictures. Compression is needed
- Lossless compression
 - G3, G4, JBIG
 - GIF, PNG
- Lossy compression
 - JPEG
- Image containers

– TIFF

 BMP, RAW (sensor output), DNG (Digital Negative), etc.

Common raster image file formats

- Lossless compression
 - G3, G4, JBIG
 - GIF, PNG
- Lossy compression
 - JPEG
- Image containers
 - TIFF
- BMP, RAW (sensor output), DNG (Digital Negative), etc.

JPEG

- Lossy compression methods take advantage from the fact that the human eye is less sensitive to small greyscale or color variation in an image
- JPEG Joint Photographic Experts Group and Joint Binary Image Group, part of CCITT and ISO
- The encoding and decoding process is done on an 8x8 block of pixels (separately for each color component)
- Compression rates
 - 0.25–0.5 bit/pixel: moderate to good quality, sufficient for some applications
 - 0.5–0.75 bit/pixel: good to very good quality, sufficient for many applications
 - 0.75–1.5 bit/pixel: excellent quality, sufficient for most applications
 - 1.5–2 bits/pixel: usually indistinguishable from the original, sufficient for the most demanding applications

Vittore Casarosa – Biblioteche Digitali

- Arithmetic coding instead of Huffman coding (10% improvement in compression)
- JPEG-2000 Use of wavelets instead of DCT (20% improvement in compression, better quality for images with sharp edges)
- JPEG-LS state of the art lossless compression
 - For each pixel, what is coded is the difference between the actual pixel value and a prediction of pixel value based on the pixel context
- Compression rates
 - 0.25–0.5 bit/pixel: moderate to good quality, sufficient for some applications
 - 0.5–0.75 bit/pixel: good to very good quality, sufficient for many applications
 - 0.75–1.5 bit/pixel: excellent quality, sufficient for most applications
 - 1.5–2 bits/pixel: usually indistinguishable from the original, sufficient for the most demanding applications

Common raster image file formats

- Lossless compression
 - G3, G4, JBIG
 - GIF, PNG
- Lossy compression
 - JPEG
- Image containers
 - TIFF
- BMP, RAW (sensor output), DNG (Digital Negative), etc.

TIFF

- Tagged Image File Format file format that includes extensive facilities for descriptive metadata
 - note that TIFF tags are not the same thing as XML tags
- Owned by Adobe, but public domain (no licensing)
- Large number of options
 - Problems of backward compatibility
 - Problems of interoperability (Thousands of Incompatible File Formats (29))
- Can include (and describe) four types of images
 - bilevel (black and white), greyscale, palette-color, full-color
- Support of different color spaces
- Support of different compression methods
- Much used in digital libraries and archiving

Numbers

- Text (characters and ideograms)
- Documents
- Images
- Video
- Audio

- Sequence of *frames* (still images) displayed with a given frequency
 - NTSC 30 f/s, PAL 25 f/s, HDTV 60 f/s
- Resolution of each frame depend on quality and video standard
 - 720x480 NTSC, 768x576 PAL, 1920x1080 HDTV, 3840×2160 UltraHD, 4096×2160 4K
- Uncompressed video requires "lots of bits"
 - − e.g. 1920x1080x24x30 = ~ 1,5 GB/sec
- It is possible to obtain very high compression rates
 - Spatial redundancy (within each frame, JPEG-like)
 - Temporal redundancy (across frames)

MPEG

- MPEG Motion Picture Experts Group established in 1988 as a committee of ISO to develop an open standard for digital TV format (CD-ROM)
- Business motivations
 - Two types of application for videos:
 - Asymmetric (encoded once, decoded many times)
 - Broadcasting, CD's
 - Video games, Video on Demand
 - Symmetric (encoded once, decoded once)
 - Video phone, video mail ...
- Design point for MPEG-1
 - Video at about 1.5 Mbits/sec
 - Audio at about 64-192 kbits/channel

Spatial Redundancy Reduction (DCT)

Vittore Casarosa – Biblioteche Digitali

Image: Constraint of the sector of the sec

Types of frames in compression

- MPEG uses three types of frames for video coding (compressing)
 - I frames: intra-frame coding
 - Coded without reference to other frames
 - Moderate compression (DCT, JPEG-like)
 - Access points for random access
 - P frames: predictive-coded frames
 - Coded with reference to previous I or P frames
 - B frames: bi-directionally predictive coded
 - Coded with reference to previous and future I and P frames
 - Highest compression rates

- *I* frames are independently encoded
- P frames are based on previous I and P frames
- B frames are based on previous and following I and P frames

Type Size Compression

I	18	KB	7:1
Ρ	6	KB	20:1
В	2.5	KB	50 : 1
Avg	4.8	KB	27:1

Numbers

- Text (characters and ideograms)
- Documents
- Images
- Video
- Audio

sampling rate should be at least the double of the highest frequency in the signal (Shannn theorem)
8-16 bit per sample

Representing audio

- MPEG-1 defines three different schemes (called *layers*) for compressing audio
- All layers support sampling rates of 32, 44.1 and 48 kHz
- MP3 is MPEG-1 Layer 3

- A muxer (abbreviation of multiplexer) is a "container" file that can contain several video and audio streams, compressed with codecs
 - Common file formats are AVI, DIVx, FLV, MKV, MOV, MP4, OGG, VOB, WMV, 3GPP
- A codec (abbreviation of coder/decoder) is a "system" (a series of algorithms) to compress video and audio streams
 - Common video codecs are HuffyYUV, FLV1, HEVC, Mpeg2, xvid4, x264, H264, H265
 - Common audio codecs are AAC, AC3, MP3, PCM, Vorbis