

Introduction to Unicode

History of Character Codes

In 1968, the American Standard Code for Information Interchange, better known by its acronym
ASCII, was standardized. ASCII defined numeric codes for various characters, with the numeric
values running from 0 to 127. For example, the lowercase letter ‘a’ is assigned 97 as its code value.

ASCII was an American-developed standard, so it only defined unaccented characters. There was
an ‘e’, but no ‘é’ or ‘Í’. This meant that languages which required accented characters couldn’t be
faithfully represented in ASCII. (Actually the missing accents matter for English, too, which
contains words such as ‘naïve’ and ‘café’, and some publications have house styles which require
spellings such as ‘coöperate’.)

For a while people just wrote programs that didn’t display accents. I remember looking at Apple][
BASIC programs, published in French-language publications in the mid-1980s, that had lines like
these:

PRINT "FICHIER EST COMPLETE."
PRINT "CARACTERE NON ACCEPTE."

Those messages should contain accents, and they just look wrong to someone who can read French.

In the 1980s, almost all personal computers were 8-bit, meaning that bytes could hold values
ranging from 0 to 255. ASCII codes only went up to 127, so some machines assigned values
between 128 and 255 to accented characters. Different machines had different codes, however,
which led to problems exchanging files. Eventually various commonly used sets of values for the
128-255 range emerged. Some were true standards, defined by the International Standards
Organization, and some were de facto conventions that were invented by one company or another
and managed to catch on.

255 characters aren’t very many. For example, you can’t fit both the accented characters used in
Western Europe and the Cyrillic alphabet used for Russian into the 128-255 range because there are
more than 127 such characters.

You could write files using different codes (all your Russian files in a coding system called KOI8,
all your French files in a different coding system called Latin1), but what if you wanted to write a
French document that quotes some Russian text? In the 1980s people began to want to solve this
problem, and the Unicode standardization effort began.

Unicode started out using 16-bit characters instead of 8-bit characters. 16 bits means you have 2^16
= 65,536 distinct values available, making it possible to represent many different characters from
many different alphabets; an initial goal was to have Unicode contain the alphabets for every single
human language. It turns out that even 16 bits isn’t enough to meet that goal, and the modern
Unicode specification uses a wider range of codes, 0-1,114,111 (0x10ffff in base-16).

There’s a related ISO standard, ISO 10646. Unicode and ISO 10646 were originally separate
efforts, but the specifications were merged with the 1.1 revision of Unicode.

vcadmin
Text Box
https://docs.python.org/3.3/howto/unicode.html/

(This discussion of Unicode’s history is highly simplified. I don’t think the average Python
programmer needs to worry about the historical details; consult the Unicode consortium site listed
in the References for more information.)

Definitions

A character is the smallest possible component of a text. ‘A’, ‘B’, ‘C’, etc., are all different
characters. So are ‘È’ and ‘Í’. Characters are abstractions, and vary depending on the language or
context you’re talking about. For example, the symbol for ohms (Ω) is usually drawn much like the
capital letter omega (Ω) in the Greek alphabet (they may even be the same in some fonts), but these
are two different characters that have different meanings.

The Unicode standard describes how characters are represented by code points. A code point is an
integer value, usually denoted in base 16. In the standard, a code point is written using the notation
U+12ca to mean the character with value 0x12ca (4810 decimal). The Unicode standard contains a
lot of tables listing characters and their corresponding code points:

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET

Strictly, these definitions imply that it’s meaningless to say ‘this is character U+12ca’. U+12ca is a
code point, which represents some particular character; in this case, it represents the character
‘ETHIOPIC SYLLABLE WI’. In informal contexts, this distinction between code points and
characters will sometimes be forgotten.

A character is represented on a screen or on paper by a set of graphical elements that’s called a
glyph. The glyph for an uppercase A, for example, is two diagonal strokes and a horizontal stroke,
though the exact details will depend on the font being used. Most Python code doesn’t need to
worry about glyphs; figuring out the correct glyph to display is generally the job of a GUI toolkit or
a terminal’s font renderer.

Encodings

To summarize the previous section: a Unicode string is a sequence of code points, which are
numbers from 0 to 0x10ffff. This sequence needs to be represented as a set of bytes (meaning,
values from 0-255) in memory. The rules for translating a Unicode string into a sequence of bytes
are called an encoding.

The first encoding you might think of is an array of 32-bit integers. In this representation, the string
“Python” would look like this:

 P y t h o n
0x50 00 00 00 79 00 00 00 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

This representation is straightforward but using it presents a number of problems.

1. It’s not portable; different processors order the bytes differently.

2. It’s very wasteful of space. In most texts, the majority of the code points are less than 127,
or less than 255, so a lot of space is occupied by zero bytes. The above string takes 24 bytes
compared to the 6 bytes needed for an ASCII representation. Increased RAM usage doesn’t
matter too much (desktop computers have megabytes of RAM, and strings aren’t usually
that large), but expanding our usage of disk and network bandwidth by a factor of 4 is
intolerable.

3. It’s not compatible with existing C functions such as strlen(), so a new family of wide
string functions would need to be used.

4. Many Internet standards are defined in terms of textual data, and can’t handle content with
embedded zero bytes.

Generally people don’t use this encoding, instead choosing other encodings that are more efficient
and convenient. UTF-8 is probably the most commonly supported encoding; it will be discussed
below.

Encodings don’t have to handle every possible Unicode character, and most encodings don’t. For
example, Python’s default encoding is the ‘ascii’ encoding. The rules for converting a Unicode
string into the ASCII encoding are simple; for each code point:

1. If the code point is < 128, each byte is the same as the value of the code point.
2. If the code point is 128 or greater, the Unicode string can’t be represented in this encoding.

(Python raises a UnicodeEncodeError exception in this case.)

Latin-1, also known as ISO-8859-1, is a similar encoding. Unicode code points 0-255 are identical
to the Latin-1 values, so converting to this encoding simply requires converting code points to byte
values; if a code point larger than 255 is encountered, the string can’t be encoded into Latin-1.

Encodings don’t have to be simple one-to-one mappings like Latin-1. Consider IBM’s EBCDIC,
which was used on IBM mainframes. Letter values weren’t in one block: ‘a’ through ‘i’ had values
from 129 to 137, but ‘j’ through ‘r’ were 145 through 153. If you wanted to use EBCDIC as an
encoding, you’d probably use some sort of lookup table to perform the conversion, but this is
largely an internal detail.

UTF-8 is one of the most commonly used encodings. UTF stands for “Unicode Transformation
Format”, and the ‘8’ means that 8-bit numbers are used in the encoding. (There’s also a UTF-16
encoding, but it’s less frequently used than UTF-8.) UTF-8 uses the following rules:

1. If the code point is <128, it’s represented by the corresponding byte value.
2. If the code point is between 128 and 0x7ff, it’s turned into two byte values between 128 and

255.
3. Code points >0x7ff are turned into three- or four-byte sequences, where each byte of the

sequence is between 128 and 255.

UTF-8 has several convenient properties:

1. It can handle any Unicode code point.
2. A Unicode string is turned into a string of bytes containing no embedded zero bytes. This

avoids byte-ordering issues, and means UTF-8 strings can be processed by C functions such
as strcpy() and sent through protocols that can’t handle zero bytes.

3. A string of ASCII text is also valid UTF-8 text.

4. UTF-8 is fairly compact; the majority of code points are turned into two bytes, and values
less than 128 occupy only a single byte.

5. If bytes are corrupted or lost, it’s possible to determine the start of the next UTF-8-encoded
code point and resynchronize. It’s also unlikely that random 8-bit data will look like valid
UTF-8.

References

The Unicode Consortium site at <http://www.unicode.org> has character charts, a glossary, and
PDF versions of the Unicode specification. Be prepared for some difficult reading.
<http://www.unicode.org/history/> is a chronology of the origin and development of Unicode.

To help understand the standard, Jukka Korpela has written an introductory guide to reading the
Unicode character tables, available at <http://www.cs.tut.fi/~jkorpela/unicode/guide.html>.

Another good introductory article was written by Joel Spolsky
<http://www.joelonsoftware.com/articles/Unicode.html>. If this introduction didn’t make things
clear to you, you should try reading this alternate article before continuing.

Wikipedia entries are often helpful; see the entries for “character encoding”
<http://en.wikipedia.org/wiki/Character_encoding> and UTF-8 <http://en.wikipedia.org/wiki/UTF-
8>, for example.

