Mappe e dintorni: esploriamo la cartografia digitale

Scuola estiva "Strumenti digitali per umanisti"

Augusto Ciuffoletti

14 giugno 2017

Mappe e dintorni: esploriamo la cartografia digitale

Cos'è la cartografia digitale

- Gli obiettivi della cartografia digitale non si differenziano da quelli della cartografia classica
 - Registrare la posizione sul territorio di oggetti o punti
 - Rappresentare le caratteristiche morfologiche del territorio
 - Rappresentare percorsi di spostamento
 - Associare proprietà e caratteristiche ad oggetti
 - Rappresentare territori immaginari, o proiettati nel passato, o nel futuro

A cosa serve la cartografia digitale

- Anche l'uso della cartografia digitale non si allontanano da quelli della cartografia classica
 - Calcolare dimensioni geometriche relative ad oggetti ed aree
 - Determinare e registrare confini di stati e proprietà
 - Determinare rotte per raggiungere destinazioni
 - Documentare viaggi e altri generi di spostamento
 - Collocare geograficamente eventi umani o naturali

Mappe e dintorni: esploriamo la cartografia digitale

I vantaggi della cartografia digitale

- La cartografia digitale si differenzia da quella classica per il supporto sul quale è registrata la mappa
 - una memoria digitale, accessibile tramite un dispositivo adatto
- La cartografia digitale, rispetto alla tradizionale presenta vantaggi importanti
 - dematerializzazione della mappa, che diventa facilmente condivisibile
 - possibilità di acquisizione automatica di posizioni e spostamenti
 - semplicità di manipolazione e creazione
 - possibilità di fondere dati provenienti da mappe diverse
 - possibilità di collegare alla mappa informazioni multi-mediali

Cartografia digitale aperta e chiusa

- Alternativa sempre presente in Internet:
 - il contenuto è di dominio pubblico o è privato?
- Si presenta anche nella cartografia
- Cartografia open source: Open Street Map
 - Le mappe sono di pubblico dominio
 - Chiunque può aggiungere dettagli alle mappe
 - Le mappe possono essere riutilizzate
- Cartografia gratuita: Google Maps
 - L'accesso alla mappa avviene attraverso un servizio privato
 - Chiunque può aggiungere una propria mappa
- Cartografia privata: mapbox
 - Le mappe sono cedute a pagamento
 - Chi le acquisisce può utilizzarle a pagamento

Mappe e dintorni: esploriamo la cartografia digitale

La terminologia GIS

- Features (caratteristiche)
 - Punti (associati a coordinate)
 - Linee (composte da più segmenti)
 - Aree (superfici delimitate da linee chiuse)
- Attributi (associati alle features)
- Vettore (rappresentazine di un insieme di features)
- Raster (rappresentazione puntuale di un'area geografica)
- Layers (livelli)
- Canvas (sfondo)

Gli strumenti per il GIS: i database

- Database specializzati registrano livelli, features e attributi
- Un esempio in Postgis:

INSERT INTO luoghi (name, coord)

VALUES ('Pisa',ST_GeographyFromText('SRID=4326;POINT(10.41_43.72)'));

Legenda:

- luoghi è una table che mi sono creato in precedenza
- ha due colonne che descrivono il nome di un punto e le sue coordinate
- Con la INSERT inserisco una nuova registrazione
- Il nome del nuovo punto è Pisa
- Le coordinate sono inserite con una funzione specifica di Postgis: STGeographyFromText
- La stringa di testo contiene un parametro SRID che identifica il sistema di coordinate
 - 4326=WGS84, ce ne è una dozzina
- e l'indicazione di un punto: prima la longitudine, poi la latitudine

Mappe e dintorni: esploriamo la cartografia digitale

Esempio di applicazione su server: OpenStreetMaps

- Il server (www.openstreetmap.org) mi presenta l'immagine che è sul database, tramite il browser
- Lavoro direttamente su dati pubblici: tutti mi vedono!
- Non posso scegliere di lavorare in uno spazio privato
- Se uso l'editor online Id
 - Creo facilmente: un bar, una piscina, una strada
 - Potrei fare "Save" (ma non lo faccio...)
- Altrimenti tutti vedrebbero!

Traccia dettagliata di un esercizio

- Creare una feature su OpenStreetMaps
 - Aprire il browser sul sito OpenStreetMap
 - Accedere al servizio
 - utilizzare il proprio account su una delle "terze parti" oppure
 - seguire la procedura con il tasto "Registrati" (meglio, per usare poi uMap)
 - Per creare una feature (ma non premere Salva)
 - Selezionare il tasto "Modifica" (si accede all'editor online "Id")
 - Premere sul tasto "Punto" (diventa blu)
 - Selezionare un punto sulla cartina con un click
 - Selezionare la tipologia di punto (ad es. "Caffè")
 - Compilare gli elementi interessanti
 - Premere "Annulla" (freccia all'indietro, accanto ad Area)
 - Per segnare una strada o un perimetro chiuso, un click per ogni punto, doppio click per concludere
 - Premendo Salva la nostra "feature" fasulla verrebbe registrata nel database di OpenStreet (non fatelo)

Mappe e dintorni: esploriamo la cartografia digitale

Esempio di applicazione locale: qGis

- Quantum GIS (qGis) è una applicazione GIS Open Source
 - il software è mantenuto e sviluppato da volontari
 - prima release nel 2002
- Può essere installato su Windows, Linux, MacOS
- In grado di acquisire ed aggregare layers da formati diversi
 - sia dati locali che database remoti
- Consente di creare nuovi layers
 - anche di commentare le features
- Alla fine posso:
 - produrre un file grafico
 - salvare in formato qGis
 - pubblicare la mappa
- Può fare grandi cose ma non fa nulla per rendersi simpatico

Traccia dettagliata di un esercizio

- Aprire qGis e selezionare Progetto->Nuovo
- Installare il Plugin "Openlayers" (se non è già installato)
 - Plugins->Gestisci...->cercare OpenLayers Plugin->Installa plugin
- Selezionare lo sfondo con
 - Web->OpenLayers plugin->OpenStreetMap
 - Ctrl++ per selezionare aree
 - Ripetere l'operazione di selezione
- Creare una serie di punti sulla mappa
 - Layer->Nuovo Vettore->Nuovo shapefile->Ok
 - Indicare un file dove salvarlo (Demo): compare nella legenda
 - Click (destro) sulla voce Demo nella legenda e Modifica
 compare una matita sull'icona
 - Modifica -> Aggiungi elemento
 - Spostare il puntatore sulla mappa (visualizza un mirino)
 - Click sul punto desiderato sulla mappa ed inserire l'id (numerico)
 - Click su un altro punto eccetera
 - Al termine click (destro) sulla voce Demo nella legenda e Modifica

Mappe e dintorni: esploriamo la cartografia digitale

Traccia dettagliata di un esercizio

- Modificare la grafica dei punti
 - click (destro) sulla voce Demo e selezionare Proprietà
 - modificare simbolo grafico o altro
 - premere OK
- Aggiungere un attributo (descrizione) ai punti
 - selezionare il layer Demo
 - Layer > Modifica
 - Layer->Apri tabella attributi
 - Ctrl+W
 - Impostare nome e tipo (Stringa) per l'attributo
 - Compilare gli attributi con un doppio click
 - Selezionare con doppio click e modificare
- Salvare il progetto
 - nel formato proprio di qGis
 - come immagine
 - in un formato vettoriale abbastanza diffuso (DXF)

Gli strumenti per il GIS: le librerie JavaScript

- Il JavaScript è il linguaggio utilizzato per incorporare nelle pagine web funzioni complesse
- La libreria JavaScript Leaflet consente di interagire con server GIS remoti ed integrare nella pagina i nostri dati e quelli dei server
- Si realizza una struttura complessa: l'utente che scarica una certa pagina (realizzata dal cartografo) interagisce anche con un server SQL esterno e con un database di raster

Mappe e dintorni: esploriamo la cartografia digitale

Gli strumenti per il GIS: GIS in the cloud

- Il cartografo può utilizzare anche strumenti cloud per creare una nuova la mappa
 - Con il suo browser il cartografo accede al servizio di realizzazione di mappe
 - Crea la sua pagina web che incorpora la mappa (ad es. realizzata con leaflet)
 - Il codice incorporato nella pagina web si collega al database remoto e utilizza/registra dati
 - La pagina web è visibile (o anche modificabile) da altri utenti
- e inoltre (i vantaggi del cloud):
 - nessuna installazione necessaria
 - nessun problema di capacità di calcolo
 - non dipende dal sistema operativo
 - adattabile a dispositivi diversi (PC o smartphone)
- Sembra complicato, ma è semplicissimo
- L'esempio più noto: Google MyMaps
- Noi esploriamo l'alternativa open source: uMap

Il servizio uMap

- Progetto recente, datato 2014
- Codice OpenSource (installabile su un server proprio)
- Utilizza i dati di OpenStreetMaps
- Consente di creare una mappa
 - utilizzando i dati raster di OSM
 - aggiungendo layers vettoriali da altri database
 - aggiungendo features definite tramite interfaccia grafica
- Possibile aggiungere note pop up
- Nella nota testo, immagini, link
- La mappa generata è condivisibile in modo selettivo
- Registrazione opportuna ma non indispensabile

Mappe e dintorni: esploriamo la cartografia digitale

Iniziare con uMap

- Con il browser andare alla URL http://umap.openstreetmap.fr
- Si apre una delle carte di insieme di OpenStreetMaps
- Accedere utilizzando le credenziali OpenStreetMaps (o anche Twitter, Bitbucket o Github, se le avete...)
 - è anche possibile giocare senza credenziali, ma le possibilità sono limitate
- A sinistra funzioni di controllo, a destra di editing
- Digitare a sinistra il tasto ^Q e cercare una città (*Pisa*)
- Se non piacciono alcuni nomi in francese, scegliere un'altra mappa di sfondo
 - premere a destra e selezionare "OpenStreetMaps"

Aggiungere feature

- Potete inserire a piacere (tasti a destra)
 - 오 punti, 💙 linee, 본 perimetri
- Selezionare con un click il simbolo desiderato e spostarsi sulla mappa
 - Un singolo click posiziona il punto
 - Una serie di click per punti consecutivi di una linea o perimetro
 - Un doppio click per terminare la linea o chiudere un perimetro
- Al termine della definizione della feature indicare
 - il **nome** e la **descrizione** che appariranno in un *pop-up* nella mappa
 - per modificare nuovamente cliccare sul punto e selezionare la matita

ATTENZIONE

- Per vedere i *pop-up* premere in alto a destra Disabilita la modifica
 - per ritornare in modalità Modifica premere la matita nell'angolo in alto a destra

Mappe e dintorni: esploriamo la cartografia digitale

Contenuti speciali nella descrizione

• una immagine, inserendo il link all'immagine tra due graffe:

{{http://www.example.com/fiore.jpg}}

• un link, inserendolo tra due quadre:

[[http://www.google.com]]

 una risorsa embedded, ad esempio un video youtube, tra tre graffe:

{{{http://www.youtube.com/n4IhCSMkADc}}}

• Per altre possibilità premere il piccolo punto interrogativo in testa al riquadro **descrizione**

Condivisione e download

- Per controllare l'accessibilità della mappa premere ____, a destra
 - Attenzione: accesso molto lento
 - Consentire ad altri (o a tutti) di modificare la mappa
 - Consentire ad altri di vedere (condividere) la mappa
- Premere a sinistra 🛇
 - Istruzioni per l'embedding della mappa in una pagina Web (iframe...)
 - Url corta per semplicità (provatela sullo smartphone)
 - Download delle vostre feature con vari formati
 - Provate a scaricare ed osservare il formato geojson

Mappe e dintorni: esploriamo la cartografia digitale

Conclusioni

- La cartografia digitale in questo momento è utilizzata al di sotto delle proprie possibilità
 - siamo ancora fortemente condizionati dall'uso classico della cartografia
- Abbiamo visto come la cartografia digitale immerga il mondo reale nel web
 - collegando oggetti reali a risorse web e viceversa
- E' un percorso solo all'inizio, che va controllato per venire incontro ai nostri bisogni
- Uno studio che trova il suo posto nel corso di Informatica Umanistica...

Time for a uMap challenge

Step 1: geolocalizziamoci

 Inserisci una feature *punto* in corrispondenza della tua provenienza nella mappa http://u.osmfr.org/m/151488.
 Quello che vuoi: residenza anagrafica, domicilio, nascita, dove stai meglio ecc.. Metti un tuo nickname nella descrizione del punto.

Step 2: la mappa per la Torre

 Inviti un amico a vedere la Torre: lui arriva in treno alla stazione. Crea una mappa che illustri il percorso a piedi fino alla fermata dell'autobus, poi quello in autobus, e dalla fermata di discesa sino alla Torre. In corrispondenza alla fermata di salita sull'autobus inserisci una descrizione che indichi numero e direzione dell'autobus, alla fermata di discesa il nome della fermata e il tempo di percorrenza stimato. Puoi usare autolinee di fantasia. Per finire inserisci la URL breve nella descrizione del *punto* dello step precedente.