Semantic Web

Carlo Meghini

Istituto di Scienza e Tecnologie della Informazione
Consiglio Nazionale delle Ricerche — Pisa

2017-18

Today's Lecture: OWL

Introduction

We have already encountered the notions of conceptualization and
ontology, while discussing mechanisms to organize the knowledge in a
semantic netowork.

We have come up with a simple form of ontology:

Library Material borrowedBy
donpain rarige

[A/V object] Book Individual] [Organization]

—

b

-

[Monograph [Collection] Event [Legal Body] [non-LegaI Body]

dorkain domiain

range range

Carlo Meghini

We have also seen an RDF vocabulary for expressing ontologies, the RDF
Schema vocabulary.

RDF Schema introduces a few, very important IRIs for defining classes
and taxonomies, and for typing properties.

The good news is that we have a sound, complete and efficient algorithm
to compute the generalized RDF (RDFS) closure of a graph towards
another graph, so we can compute all the triples implicit in a graph. And
be smart.

Some of these inferences are not drammatically informative, e.g.:
@ that a class is a sub-class of itself
Some other inferences may bring more useful knowledge, e.g.:

@ that something which happens (somewhere) is an event

e that if Carlo is a Man and Man is a subclass of Person, then Carlo is
a Person.

But we would like to have more inferences.

Carlo Meghini

For

instance:

that if Carlo is a Man, then Carlo is not a Woman (class disjointness)
that Carlo cannot have two fiscal codes (property functionality)

that if Carlo is born in Macerata and Macerata is in ltaly, then Carlo
is an Italian citizen (property chain)

that if Carlo is a child of Giuliana, then Giuliana is not a child of
Carlo (property asymmetry)

that if Alitalia flies from Pisa to Rome, it also flies from Rome to
Pisa (property symmetry)

that if I, J and K are time intervals, | is contained in J and J is
contanied in K, then | is contained in K (property transitivity)

that if an event E causes an event J, then J cannot precede E in time

Carlo Meghini

All these inferences are possible if we can represent in an explicit way the
meaning of the classes and of the properties that we use to model our
domain.

In general, a more articulated representation of the semantics of classes
and properties, would allow us to:

@ better document our ontology

@ introduce more automation in knowledge management, i.e., more
functionality with less code

For these reasons, we will now look into OWL, a powerful language of
the Semantic Web family for expressing riche ontologies.

/56 Carlo Meghini

Types of ontologies

There exist different kinds of ontology, according to their level of
generality.

@ Top-level ontologies describe very general concepts like space, time,
matter, object, event, action, etc., which are independent of a
particular problem or domain: it seems therefore reasonable to have
unified top-level ontologies for large communities of users.

@ Domain ontologies and task ontologies describe, respectively, the
vocabulary related to a generic domain (like medicine, or
automobiles) or a generic task or activity (like diagnosing or selling),
by specializing the terms introduced in the top-level ontology.

@ Application ontologies describe concepts depending both on a
particular domain and task, which are often specializations of both
the related ontologies. These concepts often correspond to roles
played by domain entities while performing a certain activity, like a
male Person being a spouse or a best-man in a wedding ceremony.

7/56 Carlo Meghini

Ontology development

Since ontology was identified as a crucial tool for the development and
the integration of information systems, many applied philosophers
engaged themselves with the capturing in a formal way, once for all, the
fundamental notions for knowledge representation, such as:

@ part-whole
time

space
quality
agency

events

® 6 6 6 o o

Many of the questions that need to be answered in order to develop a
formal theory of these notions are long-standing issues in philosophy:

@ do universals exist? abstract entities? possible worlds? ...

8/56 Carlo Meghini

or in science:

@ what is time? how time and space relate? what is light? what is
energy? how does it relate to matter?

The difference with the past is that now computerized information
systems are very numerous and play a fundamental roles in human
activities, and the formal capturing of these notions is essential for the
cost-effective development of sustainable information systems.

The cooperation between philosophers and scientists in the development
of ontologies has produced many ontologies that are built on top of the
consolidated results in addressing the fundamental questions.

These ontologies are in use in information systems today:

e top ontologies: DOLCE, CIDOC CRM, CYC, ... (order of dozens)

@ domain ontologies: very many, possibly incompatible (order of
hundreds)

@ application ontologies: uncountable

/56 Carlo Meghini

The engineering of an ontology is the result of the cooperation between a
domain expert and an ontology language expert:

@ the domain expert knows the terms of the domain, their definitions
and their usage

@ the ontology language expert knows how to translate the definitions
into the expressions of an ontology language, and how to set up a
system that uses such expressions to reach the final goals of the
system.

For simple ontologies, the same person may cover both roles. For the
successful engineering of realistic ontologies the cooperation is essential.

10/56 Carlo Meghini

The language that we examine today is the Ontology Web Language

(OWL), which in the Semantic Web stack is the language for defining
ontologies.

User Interface & Applications I
Trust I
Proof

Unifying Logic)

Ontology:
Query: OWL Rule:

o
SPARQL RIF a
RDFS I >
O
Data interchange:
RDF
XML |
URI/IRI |

11/56

Carlo Meghini

The OWL 2 Lineage and Family

OWL was developed within the World Wide Web Committe (W3C) in a
series of subsequent activities carried out by different groups:

©@ OWL 1, the first version of the language, became a W3C
Recommendation in February 2004.

e By the Web-Ontology (WebOnt) Working Group, which operated
from November 2001 until May 2004
@ In December 2006, OWL 1.1, an extension of OWL 1, was proposed
by some researchers for including the theoretical advances that had
been in the meantime achieved in DLs, namely the DL SROIQ.
© The OWL Working Group was created to turn OWL 1.1 into a new
W3C recommendation for an updated OWL.
o The Group operated from 2007 until December 2012, and
o issued the first edition of OWL 2 in October 2009.
@ OWL 2, second edition, became a W3C Recommendation in
December 2012.

Carlo Meghini

As far as building OWL as a semantic extension of RDF, by far the
hardest issue, two main versions of OWL were defined:

OWL DL, the language resulting from the encoding of the OWL abstract
syntax into a concrete notation. OWL DL is not a semantic extension of
RDF.

OWL Full, the language resulting from extending RDF Schema with the
classes and properties needed for encoding the OWL abstract syntax in
RDF. OWL Full is a semantic extension of RDF, and the language
including all RDF graphs.

direct semantics

Documents in the) RDF {
[OWL Abstract Syntax | serialization { P> OWL DL graphs

OWL Full = All RDF graphs

Carlo Meghini

Two semantics, but equivalent on OWL DL

We have therefore two semantics for OWL:

@ the direct semantics, defined on the OWL abstract syntax, and based on
DLs model theory

o the RDF-based semantics, defined on the encoding of OWL Full in the
RDF abstract syntax and based on the RDF model theory.

Documents in the RDF ‘ -
l OWL Abstract Syntax) | serialization P> OWLDL graphs

direct semantics

OWL Full = All RDF graphs

RDF-based semantics

The direct semantics cannot be applied to OWL Full because the
additional expressive power of OWL Full is meaningless in a DL.

14 /56 Carlo Meghini

Introduction

An OWL 2 ontology is a formal description of a domain of interest.
OWL 2 ontologies consist of three different syntactic categories:

o Entities: classes, properties, and individuals, identified by IRIs. They form
the primitive terms and the basic elements of an ontology.

@ Expressions: complex notions capturing the intensions of classes and
properties.

@ Axioms: statements that are asserted to be true.

An ontology is a resource identified by an IRl with an optional version.
Logically, an ontology consists of a set of axioms.

Physically, an ontology is associated with an ontology document, which
physically contains the ontology. The ontology document should be
accessible via the ontology IRl (if any), or via the ontology version (if
any).

For modularization, an ontology can import other ontologies, specified
via their document IRlIs.

15/56 Carlo Meghini

Datatypes are provided in OWL the same way they are provided in RDF,
to allow using standardized values such as numbers and strings.

A set of datatypes supported by a reasoner is called a datatype map.

Most datatypes are taken from the set of XML Schema Datatypes, the
RDF specification, or the specification for plain literals.

In addition, the OWL 2 datatype map adds:

@ owl:real, whose value space is the set of real numbers, and whose lexical
space is empty

@ owl:rational, whose value space is the set of rational numbers, and whose
lexical space is given by
numerator '/’ denominator
where numerator is an xsd:integer and denominator is a positive,
non-zero xsd:integer

The complete OWL 2 datatype map consists of the following datatypes:

16 /56 Carlo Meghini

owl:real

owl:rational
xsd:decimal
xsd:integer
xsd:nonNegativelnteger
xsd:nonPositivelnteger
xsd:positivelnteger
xsd:negativelnteger
xsd:long

xsd:int

xsd:short

xsd:byte
xsd:unsignedLong
xsd:unsignedint
xsd:unsignedShort
xsd:unsignedByte

xsd:double
xsd:float

xsd:string
xsd:normalizedString
xsd:token
xsd:language
xsd:Name
xsd:NCName
xsd:NMTOKEN

xsd:boolean

xsd:hexBinary
xsd:base64Binary

xsd:anyURI

xsd:dateTime
xsd:dateTimeStamp

rdf:XMLLiteral

17 /56 Carlo Meghini

Entities are the terms that are identified by IRIs. They are:

Classes, including two built-in classes:

o owl:Thing, the class of all individuals

o owl:Nothing, the empty class

Properties, which are divided into Object Properties, Data Properties and
Annotation properties

Object Properties relate two individuals, and include:

o owl:topObjectProperty, which connects all possible pairs of individuals

o owl:bottomObjectProperty, which connects no pair of individuals

Data Properties connect individuals with literals, and include:

o owl:topDataProperty, which connects all possible individuals with all
literals

o owl:bottomDataProperty, which connects no individual and no literal

18/56 Carlo Meghini

@ Annotation Properties are used to make annotations for an ontology,
axiom, or an IRI.

@ Named Individuals, representing objects from the domain.
e Datatypes, each of which must be:

o rdfs:Literal
o a datatype in the OWL datatype map
o a datattype defined by means of a datatype definition

In addition to entities, OWL 2 ontologies include:

@ literals, similar to RDF literals, which can also be understood as
individuals denoting data values

@ anonymous individuals, analogous to blank nodes in RDF

e datatype facets, i.e., pairs (F, It), where F is a facet of a datatype, and It
is a literal of the appropriate datatype.

19/56 Carlo Meghini

Property Expressions

Properties can be used in OWL 2 to form property expressions.

From a semantical point of view, property expressions are like properties,
in that they are relationship types, used in statements to connect pairs of
individuals.

From a syntactical point of view, property expressions are complex terms,
formed by applying constructors to properties.

In OWL there is just one type of property expression: Inverse Property,
which applies only to object properties.

Suppose you have a property childOf, whose intension is “pairs of people
such that the first is a direct descendant of the second”.

Then the intension of the inverse property of childOf is "pairs of people
such that the first is a parent of the second".

In some situations one may want to use childOf, in other situations the
inverse may be more convenient.

20 /56 Carlo Meghini

Construct Name
Construct Type
Functional Syntax

Description

Semantics
RDF Turtle Syntax

Example

object property inverse
object property expression
ObjectInverseOf (OP)

the property having as extension the inverse of
the extension of property OP

{(y,x) | (x,y) € (OP)°"}
__:x owl:inverseOf OP .

ObjectInverseOf(childOf)

Carlo Meghini

Class Expressions

Class expressions are provided in OWL 2 represent class intensions.

We have already seen some class intensions, e.g.:

Book — “resource that is an object and has textual content”

Parent — “resource that is a person and has at least one child”

In RDF Schema, all we can do to represent intensions is to identify them
as classes (or properties), and indicate some aspect of the intension. But
in so doing, many potentially interesting inferences are lost, e.g.,

that a book has textual content

that every parent has at least a son or a daughter

In OWL we can use class expressions to give a more accurate description
of the intension of a class, using various kinds of constructors, borrowed
from logic or set theory, e.g., (in some notation)

for Book: Object and at least one HasContent that is a Text

for Parent: Person and at least one HasChild that is a Male or Female

Carlo Meghini

From the semantical point of view, class expressions are like classes, i.e.,
selections of fetures (intension) that in every interpretation denote sets of
individuals.

From a syntactical point of view, class expressions are complex terms,
formed by applying constructors to classes, properties or expressions.

We can group class expressions in:

@ set-theoretic expressions
@ object or data property restrictions

@ object or data property cardinality restrictions

/56 Carlo Meghini

Set-theoretic class expressions

These include:

Intersection, as in: “resource that can do something and is an individual”
@ Union, as in: “Person of male gender or person of female gender”
o Complement, as in: “resource that is not a man”

@ Enumeration, as in: “resource that is monday or tuesday or ...or
sunday”

24/56 Carlo Meghini

Construct Name
Construct Type
Functional Syntax

Description

Semantics

RDF Turtle Syntax

Example

Union of Class Expressions
class expression
ObjectUnionOf(CE; ...CE,) n>2

a class expression having as intension the logical
disjunction of the intensions of class expressions
CE; ...CE,

(CE;)€ U ...U (CEn)¢

_x rdf:type owl:Class .
_:x owl:unionOf (CE; ...CE,) .

ObjectUnionOf(Male Female)

Carlo Meghini

Object property restrictions

Class expressions in OWL 2 can be formed by placing restrictions on
object property expressions.

These include:

o Existential Quantification, as in: “resource that has at least one child
who is a Male”

@ Universal Quantification, as in: “resource that has all authors who are
Italian”

@ Individual Value Restriction, as in “resource that is born in Italy”

@ Self Restriction, as in: “resource that is self-employed”

26 /56 Carlo Meghini

Construct Name
Construct Type
Functional Syntax

Description

Semantics

RDF Turtle Syntax

Example

Existential Quantification

class expression
ObjectSomeValuesFrom(OPE CE)

a class expression having as extension the re-
sources who are connected by object property
expression OPE to resources that are instances
of class expression CE

{x]3y:(x,y) € (OPE)°? and y € (CE)¢}

_:x rdf:type owl:Restriction .
_:x owl:onProperty OPE .
_:x owl:someValuesFrom CE .

ObjectSomeValuesFrom(childOf Male)

Carlo Meghini

Data property restrictions

Class expressions in OWL 2 can be formed by placing restrictions on data
property expressions, similarly to the restrictions on object property
expressions. But there are two differencies:

@ the only data property expressions allowed in OWL are data property
themselves, i.e., no data property inverse, so the restrictions in this case
are simpler

@ the restriction is defined over a data range instead of a class expression.

Data property restrictions include:

o Existential Quantification, as in: “resource that is at most 18 years old”
(has age)

@ Universal Quantification, as in: “resource that has all CAPs as integers”

o Literal Value Restriction, as in “resource that is 17 years old” (has age)

28/56 Carlo Meghini

Object property cardinality restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the
cardinality of object property expressions, that is on the number of
relationships of the same type that an individual may have.

Object property cardinality restrictions include:

@ Minimal cardinality, as in: “resource that has at least two authors that
are ltalian”

@ Maximal cardinality, as in: “resource that has at most one child that is
Male"

@ Exact cardinality, as in “resource that has exactly two members that are
self-employed”

29 /56 Carlo Meghini

Construct Name Obj. Prop. Exact Cardinality Restriction
Construct Type class expression
Functional Syntax ~ ObjectExactCardinality(n OPE CE)

Description a class expression having as extension the re-
sources who have exactly n connections of object
property expression OPE to instances of class ex-
pression CE

Semantics {x | #{y|(x,y) € (OPE)°", y € (CE)‘} = n}

RDF Turtle Syntax __:x rdf:type owl:Restriction .
_:x owl:onProperty OPE .
__:x owl:qualifiedCardinality n .
_:x owl:onClass CE .

Example ObjectExactCardinality(2 HasMember
ObjectHasSelf(isEmployedBy))

Note: the unqualified form: ObjectExactCardinality(n OPE) also exists,
equivalent to ObjectExactCardinality(n OPE owl:Thing)

Carlo Meghini

Data property cardinality restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the
cardinality of data property expressions, analogous to those on object
property expressions, with two differencies:

@ the only data property expressions allowed in OWL are data properties

@ the restriction is defined over a data range instead of a class expression.

Data property cardinality restrictions include:
@ Minimal cardinality, as in: “resource that has at least two
phone numbers that are integers of seven digits”

@ Maximal cardinality, as in: “resource that has at most one fiscal code
which is a string of type CCC CCC NNCNN CNNNC”

@ Exact cardinality, as in “resource that has exactly one birthdate that is a
date”

31/56 Carlo Meghini

Axioms

Axioms are the content of an OWL ontology.

Axioms express statements that are true in the domain that the ontology
models.

There are several kinds of axioms:

@ Declarations

@ Axioms about classes

@ Axioms about object or data properties
@ Datatype definitions

o Keys

@ Assertions, also called facts

@ Axioms about annotations

32/56 Carlo Meghini

Axioms about classes

Axioms about classes establish relationships between class expressions.

There are four kinds of class axioms:
@ subclass axioms
@ equivalent class axioms

@ disjoint class axioms

@ disjoint union axioms

Note: subclass and equivalent class axioms are present in RDF Schema
too, however in OWL they connect class expressions, while in RDF
Schema they connect simply classes.

In contrast, disjoint and disoint union axioms are not expressible at all in
RDF Schema.

33/56 Carlo Meghini

An example

Let us consider an ontology O with the following 4 axioms:

(1) A person that has a child has either at least one boy or a girl:

SubClassOf(PersonWithChild

ObjectSomeValuesFrom(hasChild ObjectUnionOf(Boy Girl)))
(2) Each boy is a child: SubClassOf(Boy Child)
(3) Each girl is a child: SubClassOf(Girl Child)
(4) If some resource has a child, then this resource is a parent:
SubClassOf(ObjectSomeValuesFrom(hasChild Child) Parent)
Then O entails: (5) SubClassOf(PersonWithChild Parent)

In every interpretation in which (1)-(4) are true, also (5) is true.

34 /56 Carlo Meghini

To verify the entailment, let us consider a “reasonable” interpretation /
Ay ={a, b cd e}
(Boy)€ = {b, c}
(Gir)€ = {e} (hasChild)©":
(Child)¢ = {b, c, e}
(PersonWithChild)¢ = {a, d}
(
(
(

a d
Parent)¢ = {a, d}
ObjectUnionOf(Boy Girl))! = {b, c, e} /\/\
ObjectSomeValuesFrom(hasChild X
c e

ObjectUnionOf(Boy Girl)))! = {a, d}
(ObjectSomeValuesFrom(hasChild
Child))! = {a, d}
This interpretation is a model of the ontology O because it satisfies all
axioms in O. And it satisfies also (5). So the entailment is verified by /.

It is reasonable because it also satisfies reasonable axioms that are not
actually stated in O, namely “a Child is either a Boy or a Girl but not
both"”, “a person with at least a child is a PersonWithChild", “a parent is
a person with at least a child”, “hasChild is irreflexive”,

35/56 Carlo Meghini

There could be less reasonable interpretations that are models of O
anyway, such as J :

Ay={a bcd el 2}

(Boy)¢ = {b, c, 1} (hasChild)©”:

(Gir)€ = {e, 1}

(Child)€ = {b, c, e 1, 2}

(PersonWithChild)¢ = {d}

(Parent)¢ = {a, d, 2} a d

(ObjectUnionOf(Boy Girl))? = {b, c, e, 1}

(ObjectSomeValuesFrom(hasChild /\/\
ObjectUnionOf(Boy Girl)))? = {a, d}

(ObjectSomeValuesFrom(hasChild b c €

Child))? = {a, d}
Even though J is strange, it satisfies (1)-(4), so it is a model of O.
In addition, it satisfies (5), so it also verifies the entailment.

To rule out interpretations like J, we have to state more axioms!

36 /56 Carlo Meghini

Object Property Axioms

OWL 2 provides axioms that can be used to characterize and establish
relationships between object property expressions.

These axioms are of the following kinds:

@ object sub-property: isBestFriendOf is a sub-property of isFriendOf

@ complex role inclusion: a mother's sister is an aunt
SubObjectPropertyOf(ObjectPropertyChain(hasMother hasSister)
hasAunt)

@ equivalent: hasBrother is equivalent to hasMaleSibling
@ disjoint: hasBrother is disjoint from hasSister

@ inverse: isChildOf is the inverse of isParentOf

@ domain: the domain of hasFather is Person

@ range: the range of hasSister is Female

37 /56 Carlo Meghini

functional: hasMother is functional

inverse functional: the inverse of matherOf is functional
reflexive: knows if reflexive (is it?)

irreflexive: marriedTo is irreflexive

symmetric: isRelativeOf is symmetric

asymmetric: hasFather is asymmetric

transitive: isDescendantOf is transitive

Carlo Meghini

Data Property Axioms

OWL 2 also provides for data property axioms, which are similar to object
property axioms.

These axioms are of the following kinds:

@ data sub-property: hasLastName is a sub-property of hasName
@ equivalent: hasName is equivalent to siChiama

e disjoint: hasName is disjoint from hasAddress

@ domain: the domain of hasName is Person

@ range: the range of hasName is xsd:string

@ functional: hasFiscalCode is functional

39/56 Carlo Meghini

Datatype Definitions

A datatype definition defines a new datatype DT as being semantically
equivalent to (i.e., a synonym of) a specified data range.

DatatypeDefinition(
CodiceFiscale
DatatypeRestriction(

xsd:string
xsd:pattern

"[A-Z){6)-[0-9]{2}-[A-Z]{1}-[0-91{2}-[A-ZI{1}-[0-9]{3}-[A-ZI{1}"))

40/56 Carlo Meghini

Similarly to keys in databases, a key in an OWL ontology is a set of
object or data property expressions that uniquely identify the instances of
a class expression.

More technically, a key axiom states that each named instance of a given
class expression CE is uniquely identified by given object property
expressions OPE; and/or by given data property experssions DPE;.

Example: HasKey(Person () (HasFiscalCode))

Note: if a key axiom is violated by two named individuals a and b, this
does not per sé cause an inconsistency. The inconsistency arises only if
the ontology states or entails that a and b are different individuals.

41 /56 Carlo Meghini

Assertions

Assertions are axioms about individuals, establishing relationships
between individuals, or between individuals and class or property
expressions. Kinds of asserions:

@ same individual: Batman is the same individual as BruceWayne

e different individual: Superman is not the same individual as BruceWayne
@ class assertion: carlo is a Male or a Female

@ positive object property: the mother of carlo is Giuliana

@ negative object property: the mother of carlo is Anna

@ positive data property: Mozart was born on “1756-01-27"" "xsd:date

nAaA

@ negative data property: Mozart was born on “1956-01-27"" "xsd:date

Note: class assertions and positive property assertions are present in RDF
Schema too; however, in OWL they connect individuals to class and
property expressions, while in RDF they connect individuals to classes
and properties only, respectively.

In contrast, the other kinds assertions are not exiressible in RDF Schema.
42 /56 Carlo Meghini

Inference problems for an OWL DL Ontology

An OWL 2 ontology O is satisfied in an interpretation | if all axioms in
the axiom closure of O are satisfied in |.

Ontology Consistency: O is consistent (or satisfiable) if a model of O
exists.

Ontology Entailment: O entails O; if every model of O is also a model
of O1 w.r.t. D and V.

Class Expression Satisfiability: CE is satisfiable w.r.t. O if a model | of
O exists such that (CE)¢ # ().

Class Expression Subsumption: CE; is subsumed by a class expression
CE, w.r.t. O if (CE;)¢ C (CE2)€ for each model | of O.

Instance Checking: a is an instance of CE w.r.t. O and if (a)! € (CE)¢
for each model | of O.

43 /56 Carlo Meghini

Global Restrictions on Axioms in OWL 2 DL

The axioms of each OWL 2 DL ontology O must satisfy global
restrictions that are necessary in order to obtain a decidable language.

The formal definition of these conditions relies on the notion of a
property hierarchy and of simple object property expressions.

These restrictions concern:

o the owl:topDataProperty
@ datatypes

@ simple roles

@ property hierarchy

@ anonymous individuals

44 / 56 Carlo Meghini

Restriction on owl:topDataProperty

The owl:topDataProperty property occurs in Ax only as the second
argument of SubDataPropertyOf axioms.

Without this restriction, owl:topDataProperty could be used to write
axioms about datatypes, which would invalidate a fundamental Theorem.

45 /56 Carlo Meghini

Restriction on Datatypes

Declaration(Datatype(SSN))
Declaration(Datatype(TIN))
Declaration(Datatype(TaxNumber))
DatatypeDefinition(

SSN

DatatypeRestriction(xsd:string xsd:pattern "[0-9]3-[0-9]2-[0-9]4"))
DatatypeDefinition(

TIN

DatatypeRestriction(xsd:string xsd:pattern "[0-9]11"))
DatatypeDefinition(TaxNumber DataUnionOf(SSN TIN))

These datatype definitions are acyclic: SSN and TIN are defined in terms
of xsd:string, and TaxNumber is defined in terms of SSN and TIN.

SSN
xsd:string <: > TaxNumber
TIN

46 /56 Carlo Meghini

If we now add an axiom defining SSN in terms of TaxNumber, then
datatypes SSN and TaxNumber could not be simply “unfolded”, which is
contrary to the intended meaning of these datatypes.

SSN
xsd:string <: > TaxNumber
TIN

This situation, however, is disallowed by imposing that an ordering exists
between the involved datatypes. Since no ordering exists, the extended
axiom set is excluded.

47 /56 Carlo Meghini

Restriction on Simple Roles

An object property expression OPE is simple in Ax if it, or it inverse, does
not have any sub-property that is the right-hand side of a complex role
inclusion axiom.

Consider the ontology consisting of the following axioms:

SubObjectPropertyOf(ObjectPropertyChain(hasFather hasBrother) hasUncle)

The brother of someone’s father is that person’s uncle

SubObjectPropertyOf(hasUncle hasRelative)

Having an uncle implies having a relative

SubObjectPropertyOf(hasBiologicalFather hasFather)

Having a biological father implies having a father

@ hasUncle is not simple, because it occurs in an complex role inclusion
axiom

@ hasRelative is not simple either, because it has a subproperty that is not
simple

o hasBiologicalFather is simple, and so is hasFather

48 /56 Carlo Meghini

Each class expression and each axiom in Ax of type from the following two
lists contains only simple object properties:

(1) ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality,
and ObjectHasSelf.

(2) FunctionalObjectProperty, InverseFunctionalObjectProperty,
IrreflexiveObjectProperty, AsymmetricObjectProperty, and
DisjointObjectProperties.

This restriction is necessary in order to guarantee decidability of the basic
reasoning problems for OWL 2 DL.

49 /56 Carlo Meghini

Restriction on the Property Hierarchy

The main goal of this restriction is to prevent cyclic definitions involving
object subproperty axioms with property chains. Consider the following
ontology:

SubObjectPropertyOf(ObjectPropertyChain(hasFather hasBrother) hasUncle)

The brother of someone’s father is that person’s uncle.

SubObjectPropertyOf(ObjectPropertyChain(hasUncle hasWife) hasAuntInLaw)

The wife of someone’s uncle is that person’s aunt-in-law.

The second axiom depends on the first one, but not vice versa; hence,
these axioms are not cyclic and can occur together in the axioms of an
OWL 2 DL ontology.

To verify this condition formally,
it suffices to find one strict partial
order < on object properties such hasBrother | hasUncle

that each property is defined only hasUncle hasAuntinLaw
in terms of the properties that are hasWife
smaller w.r.t. <. For example:

hasFather hasUncle

hasAuntInLaw

50 /56 Carlo Meghini

In contrast to the previous example, the following axioms are cyclic and
do not satisfy the restriction on the property hierarchy.

SubObjectPropertyOf(ObjectPropertyChain(hasFather hasBrother) hasUncle)

The brother of someone’s father is that person’s uncle.

SubObjectPropertyOf(ObjectPropertyChain(hasChild hasUncle) hasBrother)

The uncle of someone’s child is that person’s brother.

The second axiom depends on the first one and vice versa; hence, these
axioms are cyclic and cannot occur together in the axioms of an OWL 2
DL ontology.

To verify this condition formally, one must prove that no strict partial
order < on object properties can be found that satisfies the restriction on
the property hierarchy.

Some cyclic definitions are known not to lead to decidability problems:

SubObjectPropertyOf(ObjectPropertyChain(hasChild hasSibling) hasChild)

The sibling of someone’s child is that person’s child.

51/56 Carlo Meghini

Restrictions on Anonymous Individuals

These restrictions ensure that each OWL 2 DL ontology with anonymous
individuals can be transformed to an equivalent ontology without
anonymous individuals, thereby ensuring decidability of the basic
reasoning problems.

Roughly speaking, this is possible if property assertions connect
anonymous individuals in a tree-like way.

Consider the following ontology:

ObjectPropertyAssertion(hasChild Bob _:a) Bob has some unknown child.
ObjectPropertyAssertion(hasChild _:a Meg) This unknown child has Meg . . .
ObjectPropertyAssertion(hasChild _:a Chris) ... Chris ...
ObjectPropertyAssertion(hasChild _:a Stewie) ...and Stewie as children.

52 /56 Carlo Meghini

The connections between these can be understood as a tree that has _:a
as its root, so they can be replaced by the equivalent assertion:

ClassAssertion(
ObjectSomeValuesFrom(hasChild Bob
ObjectlntersectionOf(|
ObjectHasValue(hasChild Meg) 2

ObjectHasValue(hasChild Chris) /I\
ObjectHasValue(hasChild Stewie)))

Bob) Meg Chris Stevie

Carlo Meghini

Unlike in the previous example, the following ontologies do not satisfy the
restrictions on anonymous individuals:

_:bl
ObjectPropertyAssertion(hasSibling _:bl _:b2) |

ObjectPropertyAssertion(hasSibling _:b2 _:b3) _h2
ObjectPropertyAssertion(hasSibling _:b3 _:b1) |

_:b3

_b1
ObjectPropertyAssertion(hasChild _:bl _:b2)
ObjectPropertyAssertion(hasDaughter _:bl _:b2)

_:b2

In both cases, the anonymous individuals are connected by property
assertions in a non-tree-like way. These assertions can therefore not be
replaced with class expressions, which can lead to the undecidability of
the basic reasoning problems.

54 /56 Carlo Meghini

Conclusions

OWL 2 DL is the most sophisticated and recent language for knowledge
representation on the web.

OWL DL 2 is based on the description logic SROIQ, which is the most
expressive decidable description logic that offers a level of expressivity
adequate to realistic applications.

In order to retain decidability, several restrictions are placed on an OWL2
DL ontology. These restrictions limit the exprssivity of the language but
at the same time they guarantee full control of the systems built on top
of OWL 2 DL.

The engineering of inference engines able to reason about OWL 2 DL
ontologies is a current research topic in the engineering of theorem
provers.

It is reasonable to expect that OWL 2 DL will stay with us for a long
while.

55 /56 Carlo Meghini

Useful readings

@ Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax
(Second Edition) W3C Recommendation, 11 December 2012.
http://www.w3.org/TR/owl2-syntax/.

@ Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau, eds. OWL
2 Web Ontology Language: Direct Semantics (Second Edition) W3C
Recommendation, 11 December 2012.
http://www.w3.org/TR/owl2-direct-semantics/.

@ Michael Schneider, editor. OWL 2 Web Ontology Language: RDF-Based
Semantics (Second Edition) W3C Recommendation, 11 December 2012.
http://www.w3.org/TR/owl2-rdf-based-semantics/.

56 /56 Carlo Meghini

